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Abstract 
Hyper-heuristics are search techniques that operate on heuristic spaces by selecting low-level heuristics appropriately. 
Hyper-heuristic aims to generate a generalized and automated approaches to solve various problem domains. However, the 
effectiveness of hyper-heuristics depends on the cooperation of several low-level heuristics to provide high-quality 
solutions. Low-level heuristics can be categorized as either constructive or perturbative. They aim to construct or improve 
existing solutions. This paper presents a proposed Modified Multi-Level Hyper-Heuristic (MMHH) applied on a multilevel 
framework with three layers. The first layer is highest-level heuristic which selects a suitable hyper-heuristic algorithm. 
While the second layer called high-level heuristic that chooses suitable low-level heuristic from a set of heuristics. Two 
reward techniques are provided, one based on the amount of improvement, and the other based on the number of 
improvements. Two different scenarios for combining two reward selection algorithms are investigated. The first scenario 
is based on adopting a set of different weights for each technique. The second one is based on adapting the balancing between 
the two reward techniques by utilizing the idea of simulated annealing. The performance of the proposed MMHH algorithm 
is assessed by comparing it to a set of state-of-the-art hyper-heuristics, which include multi-level hyper-heuristics amount 
of improvement (MHHA) and number of improvements (MHHN), Dynamic Multi-Armed Bandit, Fitness-Rate-Rank Multi-
Armed Bandit, and Deep QNetwork, across six problem domains from the HyFlex Framework. Based on the experimental 
results, it is evident that the MMHH framework demonstrates high competitiveness and outperforms the other compared 
methods in five out of the six benchmarks 
Keywords: Hyper-heuristic; Multilevel; Combinatorial Optimization problems. 
1. Introduction 
Hyper-heuristics (HHs) are a class of search algorithms that aims to automate the process of selecting 
and applying heuristics to solve combinatorial optimization problems [4][5]. Unlike to traditional 
optimization techniques that use a fixed set of heuristics to investigate the search space, hyper-
heuristics can generate new heuristics or adapt existing ones to better suit a particular problem domain 
[3] [2]. The development of HHs has gained attention in the field of optimization due to their ability 
to provide automated and general-purpose solutions that can adapt to a wide range of problems [3]. 
The use of hyper-heuristics has been shown to be particularly effective for problems where the 
optimal solution is difficult to obtain or where traditional optimization algorithms are not well-suited. 
In general, HHs operates on the heuristics space rather than the search space of solutions [6]. HHs 
can be classified into two main categories: selection and generation [7]. Selection hyper-heuristics 
select the most promising heuristic at each step in the search process, whereas generation hyper-
heuristics create new heuristics by combining or modifying existing heuristics [8]. Hyper-heuristics 
frameworks are typically composed of two layers: high-level heuristics (HLHs) and low-level 
heuristics (LLHs) [9]. HLHs select the most promising LLH to be applied on the current solution in 
order to generate a new one [10][15]. LLHs are responsible for making local changes to the current 
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solution to improve its quality. LLHs can be customized for a specific problem domain. They consist 
of a problem representation, evaluation function, and a set of LLHs [11]. Designing a robust hyper-
heuristic model involves a non-trivial task of selecting appropriate LLH and the suitable move 
acceptance methods for a specific problem [12]. In recent years, several modifications and extensions 
have been proposed to improve the hyper-heuristics performance’s, such as multi-level hyper-
heuristics (MHHs) [1]. MHHs consist of three layers: the highest-level heuristic, an HLH, and a set 
of LLHs. The highest-level heuristic selects the appropriate hyper-heuristic algorithms that are 
capable of tackling a wide range of problem domains [1]. 
In this study, MMHH approach is suggested for solving combinatorial optimization problems. The 
proposed approach operates through a multilevel framework which involves three layers [1]. Two 
different scenarios are investigated to combine the two methods of reward selection algorithms, 
namely the amount of improvement and the number of improvements. In the first scenario, various 
weights are used to control the selecting method whereas the second scenario balances between the 
two selecting methods based on the idea of simulated annealing.  
  The structure of this article is organized as follows. Section 2 provides a comprehensive review of 
the related work on hyper-heuristics and its various components. Section 3 presents the Proposed 
MMHH, which addresses the limitations of the existing MHH frameworks. This section also provides 
a detailed description of the key components of the MMHH framework and how it works. Section 4 
describes the experimental design and presents the results of the evaluation. Also, presents the 
performance of the proposed MMHH framework and the previous MHH frameworks. Finally, Section 
5 presents the conclusions with different points for the farther research. 
2.  Related work  
Recently, there is a great research work is developed for hyper-heuristics selection. The performance 
of hyper-heuristics is influenced by two essential elements, LLH selection mechanism and acceptance 
criteria. The related work for this research is presented in the following sentences. 
The authors in [13] introduce a Monte Carlo tree search hyper-heuristic framework in which a tree-
based search approach is utilized to find the optimal sequence of low-level heuristics for a given state. 
The  framework performance is enhanced by incorporating a memory mechanism with a population 
of solutions and employs diverse population updating rules. The framework is evaluated across six 
domains of the hyper-heuristic (CHeSC) competition test suite to increase its generality. The 
experimental results demonstrate the framework's strong generalization abilities. They also show the 
ability to achieve competitive or even superior performance compared to the state-of-the-art results 
in the scientific literature. 
In [14], a gene expression programming algorithm generates a HLH of a hyper-heuristic framework. 
The generated heuristic uses information from the current problem state to select low-level heuristics 
and evaluate the resulting solution. This framework enables the generation of different high-level 
heuristics for each instance, promotes solution diversity. Additionally, a memory mechanism 
maintains a population of high-quality and diverse solutions, continuously updated during the search 
process. The hyper-heuristic proposed in [14] is evaluated on six combinatorial optimization 
problems, achieve more generality and competitive performance compared to state-of-the-art 
methods across all domains. 
The study developed in [19]  explores a Deep QNetwork (DQN) selection strategy within an online 
selection hyper-heuristic algorithm and compares its performance with two state-of-the-art Multi-
Armed Bandit (MAB) approaches. Two Multi-Armed Bandit (MAB) approaches, namely Dynamic 
Multi-Armed Bandit (DMAB) [22] and Fitness-Rate-Rank Multi-Armed Bandit (FRRMAB) [23], are 
introduced. DMAB is an innovative method that combines an optimal MAB algorithm with the 
statistical Page-Hinkley test, enabling the effective identification of changes in time series. On the 
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other hand, FRRMAB utilizes a sliding window to track the recent fitness improvement rates of 
operators and employs a decaying mechanism to enhance the selection probability of the best 
operator. The experiments were carried out on all six problem domains of the HyFlex Framework 
[21]. By defining the state representation and reward scheme, the DQN rapidly identified effective 
and ineffective operators, which lead to improved performance compared to the MAB strategies in 
problem instances where exploitative behaviour was advantageous. 
In a previous study [16], researchers have introduced a framework known as "MSHH" (Iterated Multi-
Stage Selection Hyper-Heuristic), which utilizes a multi-stage selection hyper-heuristic approach. 
MSHH employs multiple hyper-heuristics at different stages, with a focus on controlling transitions 
and facilitating information exchange among them. In the MSHH framework, the selection 
mechanism of hyper-heuristics is comprised of two distinct stages. The first stage employs a greedy 
strategy to compute scores for a set of LLHs, while the second stage utilizes a roulette wheel selection 
approach to choose a heuristic based on the assigned scores. Both stages utilize an adaptive threshold 
move acceptance method. Experimental results demonstrate the superior performance of MSHH 
compared to five other hyper-heuristics across various problem domains in the HyFlex framework. 
Different studies are provided on multi-level selection hyper-heuristics (MHH)such as MHHA and 
MHHN in [1]. The authors proposed a novel approach to enhance the performance of the hyper-
heuristic framework. The MHH introduces a new level-based strategy that employs a roulette wheel 
selection mechanism to effectively choose the most suitable HH-Alg based on its performance 
through the search process. This layer chooses the most suitable HH-Alg from a predefined set of 
HH-Alg’s to improve the solution obtained. The performance of the MHH algorithm is evaluated by 
comparing it with one of recent methods and other HHs that are employed as components of the 
MHH, across six commonly used benchmark datasets. The results indicate that the MHH framework 
is highly effective and outperforms other methods in five out of the six benchmarks. 
As discussed earlier, it has been observed that the previous techniques have certain limitations in 
terms of their generality and their capability to effectively employ the appropriate heuristics and 
acceptance method for various search scenarios based on the problem domain. Therefore, it is crucial 
to develop a selection technique to effectively manage this process and provide optimal use of the 
relevant heuristics and acceptance criteria. 
3. The multi-level hyper-heuristic framework 
As mentioned of, the MHH framework consists of three layers: the highest-level heuristic, HLH and 
LLH, as illustrated in Fig.1. The HLH and LLH are similar to those used in the previous framework 
[2]. However, MHH introduces a new highest-level heuristic layer involving two modules: the hyper-
heuristic algorithm (HH-Alg) selection and the HH-Alg acceptance criteria. The pool of high-level 
heuristic includes three HH-Alg’s as follows: the MSHH [16], the "Robinhood hyper-heuristic" 
(RHH) [17], and the "Hyper-heuristic Search Strategies & Timetabling" (HYSST) [18]. The essential 
goal of this layer is to provide more generalized, reusable, and automated hyper-heuristic techniques 
to tackle various problems and generate high-quality solutions. The cooperation and competition 
among several LLH's are achieved through applying different method of LLH selection and using 
different acceptance criteria. The MHH framework performs as follows: in the first step, HH-Alg is 
chosen from a pool of algorithms using a roulette wheel selection mechanism. In the second step, the 
selected HH-Alg is applied to the current solution. In the third step, the solution obtained is evaluated 
using an acceptance method, and the selected HH-Alg is rewarded based on the obtained solution. In 
the previous work, two reward methods are applied. The first method rewards the selected HH-Alg 
based on amount of improvement (MHHA), while the second one rewards the selected HH-Alg based 
on number of improvement (MHHN) [1]. Finally, the previous steps are repeated until the stopping 
criterion is met.  
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Fig.(1)  MHH framework 

4. The Proposed Modified Multi-Level Hyper-Heuristic Framework 
The authors in [1] apply either the reward based on Amount of improvement (MHHA) or the reward 
based on number of improvements (MHHN). At the beginning of search processes, there is a 
significant improvement in the solution, making MHHA the preferred approach. However, at the end 
of search processes, the rate of improvement decreases, which means MHHN a more suitable choice. 
The basic idea of MMHH is to select the appropriate reward method to reward selected HH-Alg based 
on Amount of improvement or Number of improvements. The two rewarded approaches, MHHA and 
MHHN, are employed to improve the benefits. In this context, two different scenarios can be 
employed to select the appropriate reward method. These scenarios can be explained as follows:  
The first scenario selects one of rewarded methods randomly with a constant probability. Scenario2 
employed selecting one of the rewarded methods using a probability that is based on the concept of 
simulated annealing (SA). The fundamental concept behind SA is that it accepts the worst solution 
with a certain probability, which gradually decreases over the iteration process until it becomes zero. 
This means preventing the acceptance of the worst solution. In this case, the same concept is utilized 
by initially applying the same probability to accept the MHHA strategy at the start of the search, and 
then gradually decreasing this probability over time to discourage the utilization of MHHA and 
promote the adoption of the MHHN strategy towards the end of the search.  In each scenario, MMHH 
calculates the reward of each HH-Alg after full sliding window(S). MMHH1 takes into consideration 
the history and update reward after half of sliding window. MMHH2 is online update the reward 
which calculates the reward after each iteration. 

 
 Fig.(2): Two scenarios of MMHH Framework 

4.1 The Proposed Algorithm 
The MMHH Framework adopts a multi-level approach consisting of two components at the highest-
level. The first component is responsible for HH_Alg selection, which selects an HH-Alg from a pool 
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of 𝑛𝑛 algorithms using a roulette wheel policy, and credit assignment, which rewards each HH-Alg 
based on its performance. This reward affects the selection of HH-Alg in the next sliding window (S). 
The second component is the acceptance criteria, which evaluates a new solution make a decision 
whether to accept or reject it. 
The proposed algorithm starts with all HH-Algs such that have the same probability of selection, 
which is equal to 1/ 𝑛𝑛. MMHH chooses an HH-Alg randomly based on the roulette wheel policy with 
equal chance for all HH-Algs. The selected HH-Alg applying the selection method to choose a LLH 
and acceptance criteria. Then a new solution is generated and evaluated. The new solution is 
compared with the current solution. If the generated solution is better than or equal to the current 
solution, it is accepted. Then, the reward selection method is determined randomly by a constant 
probability as scenario 1 or by the idea of simulated annealing (SA) in scenario 2. Scenario2 applies  
Eq.1 to calculate the probability 𝑃𝑃𝑃𝑃𝑖𝑖 at ith iteration in S to selects one of two reward methods.  

𝑃𝑃𝑃𝑃𝑖𝑖 = 𝑒𝑒(−𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼/(100/(𝑖𝑖+1)))                                                             (1) 

If MHHA is selected , the amount of improvement achieved by the selected HH-Alg in the new 
solution through S is calculated as " 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑒𝑒𝑃𝑃  " . if MHHN is selected, add one to 𝐴𝐴𝐴𝐴𝐴𝐴𝐼𝐼𝐴𝐴𝑒𝑒𝐴𝐴 if the 
generated solution is better than or equal to the current solution  and add one to 𝐼𝐼𝑛𝑛𝐼𝐼𝐼𝐼𝐼𝐼𝑒𝑒𝑃𝑃 either 
solution is better or equal or not. After S, the accumulative reward 𝑆𝑆𝑆𝑆𝐴𝐴𝑛𝑛,𝑆𝑆 for each HH-Alg is 
calculated using Eq.2 the total amount of improvement and the number of improvement 𝐴𝐴𝐴𝐴𝐴𝐴𝐼𝐼𝐴𝐴𝑒𝑒𝐴𝐴 
from all number HH-Alg 𝐼𝐼𝑛𝑛𝐼𝐼𝐼𝐼𝐼𝐼𝑒𝑒𝑃𝑃 according to Eq.3.  

   𝑆𝑆𝑆𝑆𝐴𝐴𝑛𝑛,𝑆𝑆 = ∑ 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑒𝑒𝑃𝑃𝑛𝑛,𝑆𝑆𝑛𝑛  ∀ 𝑛𝑛, 𝑆𝑆                                                           (2) 

𝑆𝑆𝑆𝑆𝐴𝐴𝑛𝑛,𝑆𝑆 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐼𝐼𝐴𝐴𝐼𝐼𝐴𝐴𝑛𝑛,𝑆𝑆
𝐼𝐼𝑛𝑛𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑛𝑛,𝑆𝑆

           ∀ 𝑛𝑛, 𝑆𝑆                                                      (3) 

For an HH-Alg that did not achieve any improvement, a small value 𝜖𝜖 is assigned to give it a small 
chance in the next iterations as mentioned by Eq.4. The probability for 𝑛𝑛 HH-Algs is then calculated 
by dividing the 𝑅𝑅𝑒𝑒𝑅𝑅𝑅𝑅𝐼𝐼𝐴𝐴  of each algorithm by the total improvement achieved during S according to 
Eq.5. This cycle is repeated with the new probabilities calculated for S, until the stopping criteria are 
met. 

𝑅𝑅𝑒𝑒𝑅𝑅𝑅𝑅𝐼𝐼𝐴𝐴𝑛𝑛,𝑙𝑙 = �𝑆𝑆𝑆𝑆𝐴𝐴𝑛𝑛,𝑙𝑙 + 𝜖𝜖  𝑖𝑖𝑖𝑖 𝑆𝑆𝑆𝑆𝐴𝐴𝑛𝑛,𝑙𝑙 > 0 
𝜖𝜖                      𝑂𝑂𝐴𝐴ℎ𝑒𝑒𝐼𝐼𝑅𝑅𝑖𝑖𝑃𝑃𝑒𝑒

                                                  (4) 

𝑃𝑃𝑛𝑛,𝑆𝑆+1 = 𝑅𝑅𝑒𝑒𝑅𝑅𝑅𝑅𝐼𝐼𝐴𝐴𝑛𝑛,𝑆𝑆 ∑ 𝑅𝑅𝑒𝑒𝑅𝑅𝑅𝑅𝐼𝐼𝐴𝐴𝑗𝑗,𝑆𝑆∀𝑗𝑗   ⁄                                         (5) 

The MMHH algorithm automatically selects among different HH-Algs at different points during the 
sliding window (S) and evaluates each HH-Alg based on its performance. This allows the appropriate 
HH-Alg to participate more than the others. This leads to improve the performance, level of 
generality, and reusability of MMHH. Each HH-Alg uses a different selection heuristic and 
acceptance criteria. The algorithm also provides an automatic mechanism to use both HH-Alg reward 
methods by one of the two scenarios mentioned above. This improves the quality of the solution. 

The pseudocode of MMHH is described in Alg (1). Lines 1 and 2 define the pool of HH-Algs with 
an equal chance for n HH-Algs. Line 4 shows the main loop of MMHH, which selects an HH-Alg 
using a roulette wheel and applies it to the current solution, then checks if the quality of the generated 
solution improves or remains the same. If the new solution is accepted, the selected HH-Alg is 
rewarded, as shown from line 6 to 8.Lines 9-15 apply one scenario from two scenarios explained 
above to determine the method of reward. A random value r is generated. In case scenario 1 the 
probability 𝑃𝑃𝑃𝑃𝑖𝑖   is constant. In scenario 2 the probability 𝑃𝑃𝑃𝑃𝑖𝑖 is calculated based on Eq.1. If r is less 
than 𝑃𝑃𝑃𝑃𝑖𝑖, the amount of improvement is applied, otherwise, the number of improvements is used to 
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reward the selected HH-Alg.Lines 17-20 calculate the accumulative reward and the probability of the 
amount of improving method for each HH-Alg using Eq.2 and Eq.5. Lines 21-24 calculate the 
accumulative reward and the probability of the number of improved method for each HH-Alg using 
Eq.3 and Eq.6. The previous steps are then repeated until the stopping criteria are met. From line 17-
24 can be calculated the reward of each HH-Alg after full Sliding window(S) (MMHH) or after half 
of S (MMHH1) or after each iteration (MMHH2). 
 

Algorithm 1: The proposed Multilevel-hyper-heuristic  
Inputs:  
    𝑆𝑆𝑒𝑒𝐴𝐴𝐻𝐻𝐻𝐻: hyper-heuristics Algorithms 
    P: problem to apply 
Outputs:  
    the best solution found 
Begin: 
1. 𝑆𝑆𝑒𝑒𝐴𝐴𝐻𝐻𝐻𝐻 ← {𝐻𝐻𝐻𝐻 − 𝐴𝐴𝐴𝐴𝐴𝐴1, … ,𝐻𝐻𝐻𝐻 − 𝐴𝐴𝐴𝐴𝐴𝐴𝑛𝑛} //define HH-Alg’s 
2. 𝑃𝑃𝐻𝐻𝐻𝐻−𝐴𝐴𝑙𝑙𝐴𝐴𝑛𝑛 ←

1
𝑛𝑛

  ∀𝑛𝑛 ∈ {1, . . . ,𝑛𝑛} //Assign each HH-Alg equal Probability.  
3. 𝐶𝐶𝑆𝑆𝐼𝐼_𝑆𝑆𝐼𝐼𝐴𝐴 ← 𝐼𝐼𝑛𝑛𝐴𝐴𝑖𝑖𝑅𝑅𝐴𝐴𝐼𝐼𝑒𝑒𝑆𝑆𝐼𝐼𝐴𝐴𝑆𝑆𝐴𝐴𝑖𝑖𝐼𝐼𝑛𝑛          // Initial Solution  
4. While Stopping condition not met do  
5. 𝐅𝐅𝐅𝐅𝐅𝐅 each i ∈ {1, . . . , 𝑆𝑆} 𝐝𝐝𝐅𝐅:    // Sliding Window  
6. 𝐻𝐻𝐻𝐻 − 𝐴𝐴𝐴𝐴g𝑖𝑖 ← RoulleteWheelSelction(𝑆𝑆𝑒𝑒𝐴𝐴𝐻𝐻𝐻𝐻−𝐴𝐴𝑙𝑙𝐴𝐴 ,𝑃𝑃𝐻𝐻𝐻𝐻−𝐴𝐴𝑙𝑙𝐴𝐴𝑘𝑘) 
7. NewSol ← 𝐴𝐴𝐼𝐼𝐼𝐼𝐴𝐴𝐴𝐴𝐻𝐻𝐻𝐻 − 𝐴𝐴𝐴𝐴𝐴𝐴(𝐻𝐻𝐻𝐻 − 𝐴𝐴𝐴𝐴g𝑖𝑖 ,𝐶𝐶𝑆𝑆𝐼𝐼_𝑆𝑆𝐼𝐼𝐴𝐴)  
8. 𝐶𝐶𝑆𝑆𝐼𝐼_𝑆𝑆𝐼𝐼𝐴𝐴 ← 𝐴𝐴𝐴𝐴𝐴𝐴𝑒𝑒𝐼𝐼𝐴𝐴𝑅𝑅𝑛𝑛𝐴𝐴𝐶𝐶𝐼𝐼𝑖𝑖𝐴𝐴𝑒𝑒𝐼𝐼𝑖𝑖𝑅𝑅(𝑁𝑁𝑒𝑒𝑅𝑅_𝑆𝑆𝐼𝐼𝐴𝐴)  
9. 𝐼𝐼 ← 𝐺𝐺𝑒𝑒𝑛𝑛𝑒𝑒𝐼𝐼𝑅𝑅𝐴𝐴𝑒𝑒 𝐼𝐼𝑅𝑅𝑛𝑛𝐴𝐴𝐼𝐼𝐼𝐼 𝐼𝐼𝑅𝑅𝐴𝐴𝑆𝑆𝑒𝑒 𝐼𝐼𝑖𝑖 𝐼𝐼 𝜖𝜖 {0,1}    
10. 𝑃𝑃𝑃𝑃𝑖𝑖 ← 𝐶𝐶𝑅𝑅𝐴𝐴𝐴𝐴𝑆𝑆𝐴𝐴𝑅𝑅𝐴𝐴𝑒𝑒 𝐼𝐼𝐼𝐼𝐼𝐼𝑝𝑝𝑅𝑅𝑝𝑝𝑖𝑖𝐴𝐴𝑖𝑖𝐴𝐴𝐴𝐴 𝑝𝑝𝑅𝑅𝑃𝑃𝑒𝑒𝐴𝐴 𝐼𝐼𝑛𝑛 𝑃𝑃𝐴𝐴𝑒𝑒𝑛𝑛𝑅𝑅𝐼𝐼𝑖𝑖𝐼𝐼  
11. If r < 𝑃𝑃𝑃𝑃𝑖𝑖 do  
12. 𝑅𝑅𝑒𝑒𝑅𝑅𝑅𝑅𝐼𝐼𝐴𝐴𝐴𝐴 ← 𝐴𝐴𝑃𝑃𝑃𝑃𝑖𝑖𝐴𝐴𝑛𝑛𝐴𝐴𝐼𝐼𝐼𝐼𝑆𝑆𝑛𝑛𝐴𝐴𝑂𝑂𝑖𝑖𝑅𝑅𝑒𝑒𝑅𝑅𝑅𝑅𝐼𝐼𝐴𝐴𝑃𝑃(𝐻𝐻𝐻𝐻 − 𝐴𝐴𝐴𝐴g𝑖𝑖 ,𝐶𝐶𝑆𝑆𝐼𝐼_𝑆𝑆𝐼𝐼𝐴𝐴,𝑁𝑁𝑒𝑒𝑅𝑅_𝑆𝑆𝐼𝐼𝐴𝐴)  
13. Else do 
14. 𝑅𝑅𝑒𝑒𝑅𝑅𝑅𝑅𝐼𝐼𝐴𝐴𝑁𝑁 ← 𝐴𝐴𝑃𝑃𝑃𝑃𝑖𝑖𝐴𝐴𝑛𝑛𝑁𝑁𝑆𝑆𝐼𝐼𝑂𝑂𝑖𝑖𝑅𝑅𝑒𝑒𝑅𝑅𝑅𝑅𝐼𝐼𝐴𝐴𝑃𝑃(𝐻𝐻𝐻𝐻 − 𝐴𝐴𝐴𝐴g𝑖𝑖 ,𝐶𝐶𝑆𝑆𝐼𝐼_𝑆𝑆𝐼𝐼𝐴𝐴,𝑁𝑁𝑒𝑒𝑅𝑅_𝑆𝑆𝐼𝐼𝐴𝐴) 
15. EndIF 
16. 𝐄𝐄𝐄𝐄𝐝𝐝𝐅𝐅𝐅𝐅𝐅𝐅 
17. 𝐅𝐅𝐅𝐅𝐅𝐅 𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆 𝑛𝑛 ∈ {1, . . . ,𝑛𝑛} 𝐝𝐝𝐅𝐅: 
18. 𝑅𝑅𝑒𝑒𝑅𝑅𝑅𝑅𝐼𝐼𝐴𝐴𝑛𝑛 ← 𝑈𝑈𝐼𝐼𝐴𝐴𝑅𝑅𝐴𝐴𝑒𝑒𝑅𝑅𝑒𝑒𝑅𝑅𝑅𝑅𝐼𝐼𝐴𝐴𝐼𝐼𝑖𝑖𝐴𝐴𝐴𝐴𝐴𝐴(𝑅𝑅𝑒𝑒𝑅𝑅𝑅𝑅𝐼𝐼𝐴𝐴𝐴𝐴) // as Eq.2 
19. 𝑃𝑃𝐻𝐻𝐻𝐻−𝐴𝐴𝑙𝑙𝐴𝐴𝑛𝑛 ← 𝑈𝑈𝐼𝐼𝐴𝐴𝑅𝑅𝐴𝐴𝑒𝑒𝑃𝑃𝐼𝐼𝐼𝐼𝑝𝑝𝑅𝑅𝑝𝑝𝐴𝐴𝑖𝑖𝐴𝐴𝑖𝑖𝑒𝑒𝑃𝑃(𝑅𝑅𝑒𝑒𝑅𝑅𝑅𝑅𝐼𝐼𝐴𝐴𝐴𝐴𝑛𝑛)     // as Eq.5 
20. 𝐄𝐄𝐄𝐄𝐝𝐝𝐅𝐅𝐅𝐅𝐅𝐅 
21. 𝐅𝐅𝐅𝐅𝐅𝐅 𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆 𝒏𝒏 ∈ {1, . . . ,𝑛𝑛} 𝐝𝐝𝐅𝐅: 
22. 𝑅𝑅𝑒𝑒𝑅𝑅𝑅𝑅𝐼𝐼𝐴𝐴𝑛𝑛 ← 𝑈𝑈𝐼𝐼𝐴𝐴𝑅𝑅𝐴𝐴𝑒𝑒𝑅𝑅𝑒𝑒𝑅𝑅𝑅𝑅𝐼𝐼𝐴𝐴𝐼𝐼𝑖𝑖𝐴𝐴𝐴𝐴𝐴𝐴(𝑅𝑅𝑒𝑒𝑅𝑅𝑅𝑅𝐼𝐼𝐴𝐴𝑁𝑁) // Eq.3 
23. 𝑃𝑃𝐻𝐻𝐻𝐻−𝐴𝐴𝑙𝑙𝐴𝐴𝑛𝑛 ← 𝑈𝑈𝐼𝐼𝐴𝐴𝑅𝑅𝐴𝐴𝑒𝑒𝑃𝑃𝐼𝐼𝐼𝐼𝑝𝑝𝑅𝑅𝑝𝑝𝐴𝐴𝑖𝑖𝐴𝐴𝑒𝑒𝑃𝑃(𝑅𝑅𝑒𝑒𝑅𝑅𝑅𝑅𝐼𝐼𝐴𝐴𝑁𝑁𝑛𝑛)     // Eq.6 
24. 𝐄𝐄𝐄𝐄𝐝𝐝𝐅𝐅𝐅𝐅𝐅𝐅 
25. 𝐄𝐄𝐄𝐄𝐝𝐝𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄 
26. 𝐄𝐄𝐄𝐄𝐝𝐝. 

The computational complexity analysis of the provided algorithm can be summarized as follows: 
The initialization process, encompassing Lines 1 to 3, boasts a constant complexity denoted as O(1). 
The central main loop, executed in Line 4, exhibits a complexity of O(m), where m signifies the 
number of iterations. The sliding window operation, taking place in Line 5, carries a complexity of 
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O(s), with s indicating the number of sliding window iterations. The selection and application of 
algorithms, as depicted in Lines 6 to 16, maintains a constant complexity denoted as O(1). The 
updating of rewards and probabilities, executed in Lines 17 to 20 and 21 to 24, respectively, each 
presents a complexity of O(n), where n represents the number of algorithms considered. Total 
complexity according to Eq.6:  

         𝑇𝑇𝐼𝐼𝐴𝐴𝑅𝑅𝐴𝐴 ≈  𝑂𝑂(1) +  𝑂𝑂(𝐼𝐼)�𝑂𝑂(𝑃𝑃) ∗  𝑂𝑂(𝐴𝐴𝐴𝐴𝐴𝐴) +  𝑂𝑂(1) +  𝑂𝑂(𝑛𝑛) +  𝑂𝑂(𝑛𝑛)� +  𝑂𝑂(𝐼𝐼𝑛𝑛) +  𝑂𝑂(𝐼𝐼𝑛𝑛)                 (6) 
                              ≈  𝑂𝑂(1) +  𝑂𝑂(𝐼𝐼𝑃𝑃) ∗  𝑂𝑂(𝐴𝐴𝐴𝐴𝐴𝐴) +  𝑂𝑂(𝐼𝐼) +  𝑂𝑂(𝐼𝐼𝑛𝑛) +  𝑂𝑂(𝐼𝐼𝑛𝑛) 
                              ≈  𝑂𝑂(𝐼𝐼𝑃𝑃)  ∗  𝑂𝑂(𝐴𝐴𝐴𝐴𝐴𝐴) 
In summary, the algorithm's overall computational complexity is determined by the product of the 
number of iterations (m) and the number of sliding window iterations (s), which is further multiplied 
by the complexity of the heuristic algorithms (O(Alg)). This complexity analysis provides insight into 
the algorithm's resource requirements and scalability for different problem sizes. 

5.Experimental Results  
In this study, the effectiveness of the proposed MMHH is evaluated using six problem domains of 
HyFlex that represent various difficulties in most COPs according to literature review. These domains 
included SAT, BP, FSH, PS, VRP, and TSP. To assess the performance of MMHH, it is compared 
with some of the state of the art algorithms by conducting 31 different independent runs for each 
problem domain. 

5.1 Performance Analysis of scenario1 and scenario2  
Table 1 shows the result of two different scenarios to select MHHA or MHHN. In scenario 1, MHHA 
or MHHN are selected based on a specified probability(p), which means to select MHHA with 
probability p and MHHN with probability (1-p). In our experiment, two values are assigned to p (p 
=0.7, p=0.3). The proposed MMHH has three variants (MMHH, MMHH1 and MMHH2) according 
to reward calculation as mentioned in section 4. The reward calculation is applied according to the 
state of the sliding window (the proposed MMHH calculates the reward after full sliding window 
(S=20) where MMHH1 calculates the reward after half of S. Finally, MMHH2 calculates the reward 
after each iteration). The performance of all alternative MMHH, MMHH1, and MMHH2 are 
evaluated. In scenario 2, The principle of SA is applied through calculating a certain probability using 
Eq.1. The reward calculation is applied with the same manner as in scenario1 and then the same 
experiment is performed.  
The results, presented in Table 1, indicate the average objective function value over 31 independent 
runs. Its clear that MMHH in scenario 2 achieves the best performance over 21 instances out of 30 
instances of the six problem domains, specifically all instances in BP, four instances in SAT as Fig.3 
FSH, and PS. In VRP, it performs significantly better in three instances. Unfortunately, there is no 
clear differences between scenario1 and scenario2 regarding the average result for TSP instances. 
General speaking, scenario2 improves the overall performance in most test instance. So, it will be 
generalized and used to increase the performance of the MHH (MHHA and MHHN) to obtain the 
modified version. 
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Table 1: Average of two scenarios of MMHH Algorithms 

    Scenario1(P=0.7) Scenario1(P=0.3)  Scenario2 

Dom inst MMHH MMHH1 MMHH2 MMHH MMHH1 MMHH2 MMHH MMHH1 MMHH2 

SAT 

inst1 2.66E+01 2.67E+01 2.63E+01 2.80E+01 2.76E+01 2.82E+01 2.61E+01 2.59E+01 2.70E+01 

inst2 2.21E+01 2.21E+01 2.18E+01 2.31E+01 2.21E+01 2.23E+01 2.11E+01 2.15E+01 2.19E+01 

inst3 1.12E+01 1.10E+01 1.17E+01 1.10E+01 1.16E+01 1.13E+01 9.45E+00 1.11E+01 1.06E+01 

inst4 8.65E+00 9.97E+00 1.05E+01 9.39E+00 1.03E+01 9.42E+00 7.10E+00 9.48E+00 9.84E+00 

inst5 2.05E+01 1.98E+01 1.87E+01 1.80E+01 1.88E+01 1.91E+01 1.64E+01 1.82E+01 2.00E+01 

BP 

inst1 7.71E-03 7.62E-03 7.66E-03 7.72E-03 7.90E-03 7.76E-03 7.43E-03 7.52E-03 7.56E-03 

inst2 2.25E-02 2.24E-02 2.23E-02 2.23E-02 2.24E-02 2.24E-02 2.22E-02 2.23E-02 2.23E-02 

inst3 2.44E-02 2.43E-02 2.46E-02 2.42E-02 2.42E-02 2.41E-02 2.40E-02 2.41E-02 2.41E-02 

inst4 5.56E-03 5.63E-03 5.63E-03 5.73E-03 5.75E-03 5.64E-03 5.51E-03 5.55E-03 5.61E-03 

inst5 4.16E-03 4.02E-03 4.02E-03 4.16E-03 4.04E-03 4.03E-03 3.95E-03 4.02E-03 3.99E-03 

FSH 

inst1 6.34E+03 6.34E+03 6.34E+03 6.34E+03 6.34E+03 6.34E+03 6.33E+03 6.34E+03 6.33E+03 

inst2 6.42E+03 6.41E+03 6.41E+03 6.41E+03 6.42E+03 6.42E+03 6.41E+03 6.41E+03 6.41E+03 

inst3 6.39E+03 6.40E+03 6.39E+03 6.39E+03 6.39E+03 6.39E+03 6.39E+03 6.39E+03 6.39E+03 

inst4 6.47E+03 6.47E+03 6.47E+03 6.47E+03 6.47E+03 6.47E+03 6.46E+03 6.47E+03 6.47E+03 

inst5 1.06E+04 1.05E+04 1.06E+04 1.05E+04 1.05E+04 1.05E+04 1.05E+04 1.05E+04 1.05E+04 

PS 

inst1 2.34E+03 2.27E+03 2.33E+03 2.30E+03 2.32E+03 4.07E+03 2.40E+03 2.43E+03 3.96E+03 

inst2 5.97E+02 7.49E+02 7.99E+03 1.52E+04 2.18E+04 5.87E+02 3.96E+02 4.53E+02 5.02E+02 

inst3 2.35E+01 2.65E+01 2.19E+01 2.46E+01 2.33E+01 2.32E+01 1.93E+01 2.11E+01 2.22E+01 

inst4 2.66E+01 2.80E+01 2.87E+01 2.83E+01 2.88E+01 2.85E+01 2.39E+01 2.73E+01 2.63E+01 

inst5 2.74E+01 2.81E+01 2.80E+01 3.28E+01 2.86E+01 2.66E+01 2.19E+01 2.55E+01 2.45E+01 

VRP 

inst1 2.07E+04 2.08E+04 2.07E+04 2.07E+04 2.07E+04 2.07E+04 2.07E+04 2.07E+04 2.07E+04 

inst2 1.34E+04 1.35E+04 1.34E+04 1.34E+04 1.34E+04 1.34E+04 1.34E+04 1.34E+04 1.34E+04 

inst3 5.35E+03 5.36E+03 5.35E+03 5.35E+03 5.35E+03 5.36E+03 5.34E+03 5.35E+03 5.35E+03 

inst4 1.44E+04 1.45E+04 1.43E+04 1.43E+04 1.43E+04 1.43E+04 1.43E+04 1.43E+04 1.43E+04 

inst5 1.50E+05 1.54E+05 1.49E+05 1.51E+05 1.51E+05 1.48E+05 1.49E+05 1.49E+05 1.49E+05 

TSP 

inst1 1.13E+05 1.13E+05 1.13E+05 1.13E+05 1.13E+05 1.13E+05 1.13E+05 1.14E+05 1.13E+05 

inst2 7.00E+03 7.00E+03 7.01E+03 7.00E+03 7.01E+03 7.01E+03 6.99E+03 7.02E+03 7.02E+03 

inst3 4.32E+04 4.32E+04 4.33E+04 4.32E+04 4.33E+04 4.34E+04 4.32E+04 4.34E+04 4.33E+04 

inst4 9.16E+03 9.15E+03 9.16E+03 9.14E+03 9.14E+03 9.16E+03 9.15E+03 9.17E+03 9.17E+03 

inst5 5.95E+04 5.95E+04 5.96E+04 5.97E+04 5.96E+04 5.97E+04 5.97E+04 5.97E+04 5.97E+04 
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Fig.(3) Average of SAT of two scenarios of MMHH Algorithms 

5.2 Performance Comparison to the state-of-the-art Hyper-heuristics  
As mentioned above, MMHH with scenario 2 achieves the best performance. So, MMHH has been 
evaluated against several state-of-the-art hyper-heuristics, including DMAB, FRRMAB, and DQN, 
as well as the recent MHHA and MHHN. The comparison was conducted on six different problem 
domains of HyFlex, including SAT, BP, FSH, PS, VRP, and TSP, with 31 independent runs for each 
problem. 
The results, as shown in Table 2 and Figures 4 to 9, indicate that the proposed MMHH approach 
outperforms all the other algorithms in several instances of different problem domains. In the SAT 
problem domain, MMHH achieves the best average outcomes compared to DMAB, FRRMAB, DQN, 
MHHA, and MHHN in all instances, as shown in Figure 2 and Table 2. Similarly, in the BP problem 
domain, MMHH consistently performs the best average compared to all other algorithms, and this 
performance is statistically significant for all instances as demonstrated in Figure 3 and Table 2. 
Regarding the FSH problem domain, MMHH provides the best average outcomes for instances inst1, 
inst2, and inst4. Also, MMHH has the best performance for inst2 with FRRMAB algorithm. However, 
MHHA outperforms in inst3, and FRRMAB is the best in inst5, as indicated in Figure 4 and Table 2. 
In the PS problem domain, MMHH provides the best average outcomes in four instances (inst1, inst3, 
inst4, and inst5), and provides the second-best performance in inst2 with FRRMAB algorithm. 
However, DMAB shows the best performance on average in Inst2, as shown in Figure 5. and Table 
2. For the VRP problem domain, the superiority of the proposed MMHH approach over all the 
compared algorithms is clearly demonstrated in all instances, as depicted in Figure 6 and Table 2. In 
the TSP problem domain, MMHH outperforms all the compared algorithms in several instances 
(inst2, inst4, and inst5), but its performance is slightly lower than DQN in inst1 and MHHA in inst3, 
as shown in Figure 7 and Table 2. 
In scenario2, SA calculate the probability which selects MHHA in the beginning of the search in state 
of MHHN, and then gradually decreasing this probability over time to discourage the utilization of 
MHHA and promote the adoption of the MHHN strategy towards the end of the search. This means 
enhancing the overall results. In general, the results of this study confirm that the proposed MMHH 
approach can potentially lead to improved overall performance compared to several state-of-the-art 
hyper-heuristics. 
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Fig.(4) average performance results for the SAT problem 
across five instances. 

Fig.(5) Average performance results of BP problem across 
five instances. 

  
Fig.(6) Average performance Results of FSH problem 

across five instances 

Fig.(7) Average performance Results of PS problem across 
five instances 

  
Fig.(8): Average performance  Results of VRP problem 

across five instances 
Fig.(9) Average performance Results of TSP problem 

across five instances 
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Table 2:Average Obtained by MMHH against state-of-the-art Hyper-Heuristics Algorithms. 
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6.Conclusion  
 
Hyper-heuristic algorithms are effective approaches for solving various complex problems by 
searching through heuristics space to find the best possible solution. LLH is a set of heuristics that 
are applied to generate new solutions. The effectiveness of the hyper-heuristic framework depends 
on the selection method used for LLH and the acceptance criterion used to evaluate the new solution. 
The proposed algorithm is applied in multi-level hyper-heuristic (MHH) framework. The proposed 
MMHH enhances the level of generality by adopting different methods of reward-selected HH-Alg, 
and using various acceptance criteria mechanisms. The proposed algorithm is evaluated using six 
problem domains of HyFlex Framework. The experimental results demonstrate that the MMHH 
algorithm outperforms other state-of-the-art hyper-heuristics in most test problem such as MHHA, 
MHHN, DMAB, FRRMAB, and DQN. Future work involves tuning the parameter in proposed 
MMHH, apply MMHH to extension problems and changing the pool of HH-Alg in the highest-level 
heuristic. These improvements will further enhance the efficiency and applicability of the proposed 
algorithm in solving various complex problems. 
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