

IJCI V11-1(2024) 44–61

International Journal of Computers and Information

(IJCI)
Available online at https://ijci.journals.ekb.eg/

A New Adaptive Cellular Genetic Algorithm
for Mixed Variable Optimization Problems

Alaa Fahim
Mathematics Department, Faculty of science, Assiut university, Egypt

alaa@aun.edu.eg, dralaafahim@gmail.com

Abstract

The cellular genetic algorithm (CGA) improves the genetic algorithm for a subclass(GA) with a

dispersed population where an exchange of individuals is limited to close neighbors. In this research,

the adaptive cellular genetic algorithm (ACG) is applicable to better explore the search space. The

ACG algorithm assists in reaching the optimal solution as quickly as possible. Various problems

regarding mixed variable optimization (MVO) problems arise in numerous models and real

applications. We applied the ACG algorithm to deal with the MVO problem, which is called the

adaptive cellular genetic mixed variable ACGMV method. ACGMV algorithm performance is

evaluated using a number of benchmark test issues. The experimental findings indicate that the

ACGMV algorithm performs better than other methods. In addition, we applied ACGMV to solve the

hard data-clustering problem. which is called ACGMV-HC. The data clustering problem is

formulated using the mixed-variable programming methodology. Based on our result, the ACGMV-

HC algorithm is more effective than other methods

Keywords: Mixed variable optimization; Cellular genetic algorithm; hard cluster.

1. Introduction

One of the most widely used metaheuristic algorithms for efficient random search is the genetic

algorithm (GA). Metaheuristics algorithms' main benefit is that they provide a balance in finding the

global optimum of optimization problems in a reasonable amount of time. The GA operates on a

population set and employs stochastic procedures which are known as genetic procedures (selection,

crossover, and mutation) [25].

GA includes a cellular genetic algorithm (CGA) with a spreading population whereas the exchange

between individuals is limited to close neighbors. To prevent the rapid convergence of GA, we

disperse the population which permits the preservation of the population diversity, resulting in better

investigation of the search area. Thus, the enactment of the algorithm [13].

In this study, the grid structure of the adaptive cellular genetic algorithm (ACGA) method is applied

to achieve convergence in a short time. The ACGA is based on work on the neighborhood selection.

The major goal of our algorithm is the selection of neighborhoods from the grid to achieve a more

equitable balance between extraction and exploration. The selection of neighborhood members is

adaptive to provide diversification in exploring the search space, and intensification, especially on

the most effective solutions to find the optimal solution faster.

https://ijci.journals.ekb.eg/
mailto:alaa@aun.edu.eg

 International Journal of Computers and Information, IJCI V11-1(2024) 44–61 45

The MVO has been a subject of interest for many researchers due to its various models and

applications. The MVO is used in many areas, such as chemical engineering [27], harvesting machine

systems modeling [22], and heat network designing in an energy system [32]. There are several

methods to solve MVO problems including filter GA [19], hybrid method according to particle swarm

optimization and genetic algorithm [29], multistart Hooke and Jeeves filter method [11], difference-

genetic co-evolutionary algorithm [16], heuristic algorithm using line-up competition and pattern

search [30], The coordinate search filter algorithm is based on branches and bounds [15].

There are many methods tried to solve mixed variable programming problems [11,16,19,23]. M.

Costa[11] introduced a multistart method which utilized an extended iteration of the Hooke and

Jeeves algorithm to calculate multiple solutions for mixed variable optimization problems. Y.

Gao[16] solved a constraint bi-objective mixed variable optimization issue using the difference co-

evolution algorithm., A. Hedar [19] developed a hybrid genetic algorithm and filter method as a local

technique to handle mixed variable optimization problems with and without constraints. Y. Lin [23]

introduced the hybrid differential evaluation to achieve optimal solutions for mixed variable

optimization problems. In this paper, the adaptive cellular genetic for mixed variable (ACGMV)

algorithm is used to solve mixed variable optimization (MVO) problems.

 In this study, the ACGMV algorithm is applied to solve MVO problems. It provides a superior

quality of solutions, which are examined by 9 unconstrained and 12 benchmark test problems. A

pattern search technique is included in the ACGMV algorithm to improve the exploitation and obtain

the optimal solution faster. The ACGMVP makes the pattern around the best solutions to make the

intensification around them.

Furthermore, data clustering [21,26] means dividing data into groups of like objects. Data clustering

is relevant to a wide variety of fields and is critical in a wide variety of applications. Data clustering

is typically used to analyze huge datasets and data with a significant number of attributes, such as

document extraction, image segmentation, market research, and social network analysis. The majority

of methods for data clustering are based on the two most prevalent techniques: hierarchical and

partitional. The output is a tree in the hierarchical clustering that shows a sequence of clusters, each

cluster containing a partition of a dataset. On the other hand, algorithms for partitional clustering

categorize the data set into a predetermined number of groups. Data clustering is classified into two

types: fuzzy, and hard clustering. hard clustering is considered in this work.

Many attempts are made to handle the hard clustering problem with GAS. A GA-based clustering

technique [26] has been applied to provide an optimal clustering regarding the clustering metric in

[21], GAS has a novel sort of crossover operator that has good partitions by exchanges neighboring

centers but regrettably does not reach high-dimensional datasets. In [10], GAS is used to study the

effectiveness and efficiency of employing GAS.

The clustering issue can be reduced to an optimization issue. However Many optimization issues can

be phrased as a clustering problem, which is an interesting observation. In this paper, ACGA is

applied to the Hard Clustering problem (denoted by ACGA-HC) using the MVO problem. To our

knowledge, just a handful of attempts [14, 28] to solve the difficult clustering problem as MVO

formulation. According to our computational findings, the ACGA-HC m technique surpasses other

available methods.

46 A. Fahim

The remainder of the paper is arranged accordingly. The concept of a CGA method, the MVO

problem, and various mathematical formulas for the hard clustering problem are presented in Section

2. Section 3 describes ACGMV algorithms and their components. The computational results of the

proposed methods are introduced in Section 4. In Section 5, the computational experiments are

presented using the ACGA-HC method and the comparison of our method with other methods in

three different datasets. Conclusion and future work are discussed in Section 6.

2. Preliminaries

The notions will be demonstrated to be utilized in the suggested procedure.

2.1. Cellular Genetic Algorithm

The CGA is a type of GA that allows for a more thorough search space exploration and

algorithm implementation [13]. CGA's intersecting small neighborhoods help to explore the

area of search because they provide a slow distribution of solutions throughout the

population. It provides an exploration (diversification) of the population, while exploitation

(intensification) happens within each neighborhood by genetic operations [1]. The population

in GA could be decentralized in two main ways: cellular GA (CGA) and distributed GA

(DGA) [2]. In DGA, the population is divided into various minor subpopulations that

exchange some information with one another. Hence, each island's GA investigates a separate

search space region, thereby conserving the entire population diversity. In CGA, an

individual can relate to the breeding ring. The main difference between DGA and CGA is

how their populations are structured.

CGA's purpose is to allow the population structure reshaped as a connected graph, in

communication with its closest neighbors. A toroidal mesh is used to map each individual

[2]. Here, the grid boundary individuals are connected with individuals in the same row or

column on the opposite borders. As a result, a toroidal grid is formed in which each individual

has precisely the same number of neighbors. Each grid point has a neighborhood that

intersects with surrounding residents' neighborhoods. Each neighborhood is identical in size

and shape. Furthermore, for every individual, there are six typical neighborhood structures:

L5, L9, C9, C13, C21 and C25 [2].

̶ L5: This is also called Linear5, NEWS or von Neuman. The four closest members—

North, East, West, and South—make up its 4 nearest individuals.

̶ C9 (Compact9): C9 is also called Moore neighborhood. Here The neighborhood is

made up of the central person and the eight others nearby. -L9 (Linear9): It consists

of the central individual and its two nearest neighbors along the horizontal and

vertical axes.

̶ C13 (Compact13): Combining L9 and C9 communities created this neighborhood.

̶ C21 (Compact21): It is composed of the 20 individuals in the horizontal, vertical,

and diagonal directions from the one in the center.

̶ C25 (Compact25): It consists of 24 individuals surrounding the individual under

consideration.

 International Journal of Computers and Information, IJCI V11-1(2024) 44–61 47

When variation operators are utilized, individuals in CGA can only swap with their neighbors

during the reproductive cycle. These reproductive processes occur within the selected

individual and its neighborhood. The process includes selecting two parents through the

current individual and its neighbors, putting the operators for variation to work on them

(selection, crossover, and mutation), and substituting the created offspring for the considered

individual.

 Fig. (1):The block diagram of four common neighborhood structures in CGA.

Moreover, Asynchronously or synchronously updating cells is an option [12]. All the cells in

synchronous (parallel) are updated at once, whereas in asynchronous or sequential updates,

each cell is updated. Furthermore, we have a better concept of selection behavior in

asynchronous CGA than in the synchronous update. In addition, there are four distinct

methods for sequentially updating CGA cells: fixed line sweep (FLS), new random sweep

(NRS), fixed random sweep (FRS), and uniform choice (UC) [2].

̶ In the FLS update, the n grid cells are sequentially updated in a row. It is the simplest

method.

̶ For the FRS, with no replacement, A uniform probability is used to select the next

cell to be updated, resulting in a specific update sequence. (𝒄𝟏
𝒋
, 𝒄𝟐

𝒌,…, 𝒄𝒏
𝒎), where 𝒄𝒒

𝒑

indicates that cell number p has been updated at time q and (j, k,, m) is a

permutation of the n cells. All updated cycles employ the same permutation.

̶ NRS functions similarly to FRS with the exception that for each sweep of the array,

a new random cell permutation is used.

̶ In the UC updating method, the next cell to be updated is replaced with a uniform

probability after a random selection. This pertains to the binomial distribution for the

updated probability.

It should be noted that hierarchical CGA depends on how GA relies on how the best

individuals are moved to the center of the grid, so that better solutions may be obtained

rapidly, while individuals preserve new solutions for exploring the search space. Moreover,

48 A. Fahim

CGA is used for manipulating continuous optimization problems [12] and is applied in many

areas such as transportation [9].

2.2. Mixed Variable Optimization Problem

The general mathematical form of MVO problems, which contain both integer and

continuous variables, is given as the following equation 1:

 Min f (r,s), (1)

 Subject to 𝝓𝒊(𝒓, 𝒔) ≤ 𝟎, 𝒊 = 𝟏, … , 𝒏, (2)

𝝍𝒋(𝒓, 𝒔) = 𝟎, 𝒋 = 𝟏, … , 𝒎, (3)

𝒍𝒓 ≤ 𝒓 ≤ 𝒖𝒓, 𝒍𝒔 ≤ 𝒔 ≤ 𝒖𝒔, (4)

 𝒓 = 𝒓𝟏, 𝒓𝟐, … , 𝒓𝒏𝒓, 𝒔 = 𝒔𝟏, 𝒔𝟐, … . , 𝒔𝒏𝒔.

Where 𝒓, 𝒍𝒓, 𝒖𝒓 ∈ 𝑹𝒏𝒓, 𝒔, 𝒍𝒔, 𝒖𝒔 ∈ 𝒁𝒏𝒔 , nr and ns are the number of continuous and

discrete variables respectively, 𝒍𝒓 and 𝒖𝒓 are the lower and upper bounds for continuous

variables, 1s and us are the vectors of the lower and upper bounds for the integer variables

respectively. Assume that the functions f, 𝝓𝒊, 𝒊 = 𝟏, . . . , 𝒏 and 𝝍𝒋, 𝒋 = 𝟏, . . . , 𝒎 are

nonconvex. The penalty approach [24] was used to convert a constrained optimization issue

to an unconstrained optimization problem whose the solution must converge to the standard

constrained problem solution.

2.3 Hard Clustering Problem

In cluster analysis, it is assumed that X consists of a finite number of d-dimensional points

Rd, is given as following:

𝑿 = {𝒙𝟏, . . . , 𝒙𝒏}, where 𝒙𝒊 ∈ 𝑹𝒅, 𝒊 = 𝟏, . . . , 𝒏.

The set X is partitioned into a given number q disjoint clusters 𝑪𝒊, 𝒊 = 𝟏, . . . , 𝒒.

𝑿 = ⋃ 𝒄𝒊

𝒒

𝒊=𝟏

 (5)

Where sets 𝑪𝒊, 𝒊 = 𝟏, . . . , 𝒒. are called clusters. As mentioned before, there are two kind of

clustering problems: hard and fuzzy clustering problem.

- Hard clustering problem : Here, Each data point is associated with a single cluster.

- Fuzzy clustering problem: The clusters overlap here, and each member appears to

various degrees in each cluster.

For the investigated the hard clustering problem, so we assume that

𝑪𝒊 ∩ 𝑪𝒌 = 𝝋, ∀𝒊, 𝒌 = 𝟏, … , 𝒒, 𝒊 ≠ 𝒌. (𝟔)

Further, clustering is reduced to an optimization problem as follows:

 International Journal of Computers and Information, IJCI V11-1(2024) 44–61 49

𝒎𝒊𝒏 𝝋 (𝑪, 𝑨) =
𝟏

𝒏
 ∑ ∑ ǁ ∈𝑪𝒊

𝒒
𝒊=𝟏 𝒙 ai – xǁ2, (7)

Where 𝑪 ∈ �̅�, 𝒂𝟏, … . , 𝒂𝒒 ∈ 𝑹𝒅, ||.|| denote the Euclidean norm, A set of clusters 𝑪 =

 {𝑪𝟏, . . . , 𝑪𝒒}, �̅� is a set of all the possible q-partition of the set X, and aj is the center of

cluster Cj defined as follows: 𝒂𝒋 =
𝟏

ǀ𝑪𝒋ǀ
 ∑ 𝒙,𝒙∈𝑪𝒋

And ǀ𝑪𝒋ǀ is the cardinality of the set 𝑪𝒋, 𝒋 = 𝟏, … , 𝒒. The clustering problem in equation (7)

is referred to as the clustering problem with the minimal sum of squares.

Equation (7) can be rewritten as mixed variable problem, as shown below [8]:

min ψ (A ,w) =
𝟏

𝒏
 ∑ ∑ 𝒘𝒊𝒋

𝒒
𝒋=𝟏

𝒏
𝒊=𝟏 ǁaj – xiǁ2, (8)

Where ∑ 𝒘𝒊𝒋
𝒒
𝒋=𝟏 = 1, 𝒊 = 𝟏, … , 𝒏, (9)

And 𝒘𝒊𝒋 ∈ {𝟎, 𝟏}, 𝒊 = 𝟏, . . . , 𝒏, 𝒋 = 𝟏, … . . , 𝒒.

Here, 𝒂𝒋 =
∑ 𝒘𝒊𝒋𝒙𝒋𝒏

𝒊=𝟏

∑ 𝒘𝒊𝒋
𝒏
𝒊=𝟏

, 𝒋 = 𝟏, … , 𝒒,

And 𝒘𝒊𝒋 is the association weight of pattern xi with cluster Cj, given by

𝒘𝒊𝒋 = {
𝟏, 𝒊𝒇 𝒕𝒉𝒆 𝒑𝒂𝒕𝒕𝒆𝒓𝒏 𝒊 𝒊𝒔 𝒂𝒍𝒍𝒐𝒄𝒂𝒕𝒆𝒅 𝒕𝒐 𝒄𝒍𝒖𝒔𝒕𝒆𝒓 𝒋

∀𝒊 = 𝟏, … . , 𝒏, 𝒋 = 𝟏, … . . , 𝒒,
𝟎, 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆

The distance between centers and the dataset is calculated using the following equation.

DM = ∑ ∑ 𝒘𝒊𝒋
𝒒
𝒋=𝟏

𝒏
𝒊=𝟏 ǁaj – xiǁ2, (10)

Furthermore, equations (7) and (10) can be reformulated as a mathematical programming

problem, as follows.

𝒎𝒊𝒏 𝒇(𝒂𝟏, … , 𝒂𝒒), (11)

Where 𝑨 = (𝒂𝟏, , 𝒂𝒒) ∈ 𝑹𝒅×𝒒, and f(a1,, aq) =
𝟏

𝒏
 ∑ 𝒎𝒊𝒏𝒏

𝒊=𝟏 j=1,…., qǁa2 – xiǁ2

In this paper, Equation (8) is considered as a mixed variable optimization problem. It is

shown in [6] that equations (7), (8) and (10) are equivalent. (n + d) x q is the number of

variables in equations (8) as in equation (10). It is d x q with the number of variables being

independent of the number of instances. However, in the hard clustering problem, the

coefficients wij vary form 0-1 variables, which means, equation (8) has both continuous and

integer variables.

3. Adaptive Cellular Genetic Algorithm for Mixed Variable Optimization Problem

50 A. Fahim

Individuals produced at random to rearrange on a 2-D toroidal grid constitute the ACGMV

algorithm's implementation (achieved by encircling one another in the columns and rows).

an asynchronous FLS type are chosen for updating the cells. In addition to, the selection of

neighbors is depending to the quality of the individual. The updating in the grid is very

important aspect. A small population P are formed from the selected individual and its

neighbors in which the genetic operators operate (selection, crossover, and mutation) that

allow exploration in every selected individual are used. In order to intensify the search for

the best solutions, a pattern search is lastly added to the ACGMV approach to create

ACGMVP. The following are the components of the proposed method:

3.1. Initialization

The initial population is made up of individuals that are distributed uniformly within the

search space that is restricted by [1, u].

3.2. Mapping on the Grid

Individuals are mapped from best to worst on a two-dimensional toroidal grid. In the case

of a population of size μ, we set up in a √𝝁 × √𝝁 (assuming μ odd). in the case of a

population of size μ. An individual is represented on the grid z = (x1, x2, …., xnx,y1, y2, …..,

yny), where position (z) is at (i, j) on the toroidal grid[7].

3.3. Neighborhood

In ACGMV, Each individual chooses few a neighborhoods using different criteria as shown

in Fig.(1). The neighborhoods are chosen in our strategy based on using L5 process for all

individuals except for the best individuals, where the selection of neighborhoods is done via

C9 process. The individual and its neighborhood together create a small population. Genetic

operators are applied to this small population P.

3.4 Selection

The selection technique generates a med population, denoted P', from the existing small

population P. The more is the number of fit individuals in P, the higher is the probability of

selection in P'. This procedure is repeated until p is complete. The probability for the

population size u is determined as follows:

Pi =
𝟏

𝝁
 (ζmax – (ζmax – (ζmin)

𝒊−𝟏

𝝁−𝟏
) i =1,...,μ, (12)

Where ζmax + ζmin = 2 and 1 ≤ ζmax ≤ 2. Individuals in P' are chosen using the linear ranking

selection mechanism [5] according to the steps outlined in Procedure 1.

Procedure 1 Linear Ranking Selection

1. Put 𝒔𝟎 = 𝟎.

2. 𝒔𝒊 = 𝒔𝒊−𝟏 + 𝒑𝒊 for all 𝒊 = 𝟏, . . . , 𝝁.

3. 𝒊 = 𝟏, . . . , 𝝁 do steps 4,5.

4. Generate a random number γ ∈ [0, si].

5. Put P1 in 𝑷𝒊
′ where 𝒔𝒊−𝟏 ≤ 𝜸 ≤ 𝒔𝒊.

 International Journal of Computers and Information, IJCI V11-1(2024) 44–61 51

3.5 Crossover

First, for each individual in P', the crossover procedure generates a number in the interval

(0, 1) randomly. The individual is added to the pool known as the parent pool if the

generated number is less than the crossover probability Pc. Next, every two parent's p1 and

p2 are randomly selected from the parent pool. Two offsprings o1 and o2 is produced by an

arithmetical crossover [20] occurs between the two selected parents using the following

procedure 2:

Procedure 2 Arithmetical Crossover(p1, p2, o1,o2)

1. Generate a random number γ ∈ (0, 1).

2. Let p1 = (x1, y1) and p2 = (x2, y2).

3. Calculate the recombined offspring o1 = (r1,s1) and o2 (r2, s2), where

r1 = γ x1 + (1 – γ) x2,

s1 =]γ y1 + (1 – γ) y2[,

r2 = (1 – γ) x1 + y x2,

s2 =](1 – γ)y1 + γy2[.

4. Return.

The function ⌈.⌉ represents the upper rounds of the elements, which is the nearest integer

available to the discrete variable y.

3.6 Mutation

This operator replaces the gene's selected value from a uniform distribution with its lower

and upper limits. For every gene on each chromosome (individual) and P', a random number

between 0 and 1 is generated. If the produced number is less than the mutation probability

Pm, the chromosome is mutated. Let and represent the selected gene and chromosome

numbers, correspondingly. The mutated offspring z is then computed based on the following:

Procedure 3 Uniform Mutation

1. If the selected gene λ is continuous, update 𝒛𝜽 by setting 𝑷𝝀
𝜽= 𝒍𝒙𝝀 + 𝜸(𝒖𝒙𝝀 – 𝒍𝒙𝝀).

2. If the selected gene λ is integer, update 𝒛𝜽 by setting 𝒚𝝀
𝜽= 𝒍𝒚𝝀 + 𝜸(𝒖𝒚𝝀 – 𝒍𝒙𝝀),

where γ∈(0, 1).

3.7 Replacement (Update the Grid)

After the reproductive cycle, our current individual is derived from the highest quality

solution in the small population P. (i.e, the selection, crossover, and mutation procedure).

3.8 Pattern Search

Pattern search method (PSM) is used to enhance the quality of some exceptional offspring.

Particularly, some reformed variants of PSM are used to tackle the current problem. PSM's

input values and parameters are reset to include both continuous and integer settings.

Modifications are made to the PSM to reduce the cost function. The modified PSM then

utilizes the set D in a distinct manner.

D = {(±1)he1,..... (±1)hen},

Where h is random number h ∈ {1, 2}. Therefore, every iteration of the modified PSM

generates only n + 1 points.

52 A. Fahim

Procedure 4 Pattern Search Process

1. Select an x0 as initial solution, set a step size Δ0 > 0 for for a positive spanning

directions D, and set the counter number k = 0.

2. The grid G are generated around the initial solution. If there is an improvement in

the grid, go to Step 4.

3. Compute the poll set PSk. At each point in PSk, evaluate the cost function.

4. If an improved individual obtained in Step 2 or 3, set xk+1 f equal to this improved

point, and set Δk+1 ≥ Ak. Otherwise, set x+ = xk, and Δk+1 < Δk.

5. Stop if the termination conditions are met. Otherwise, set k = k + 1, and go to Step 2.

3.9 ACGMVP Algorithm

Figure 2 illustrates the ACGMVP component.

Fig.(2) The block diagram of ACGMVP flowchart

4. Result and Discussion

The parameters setting for our proposed method will be discussed. The ACGMV and the ACGMVP

methods are coded in MATLAB. Our methods are applied to solve 9 benchmark unconstrained

problems. f1 to f9 and 12 benchmark constrained problems g1 to g12, as shown in [19]. The properties

of these problems are sufficiently diverse to encompass numerous categories of difficulty.

The mixed-integer variable in test problems from f1 to f9 are defined as 𝒛 =

 (𝒙𝟏, … . , 𝒙𝒏𝒙, 𝒚𝟏, . . . , 𝒚𝒏𝒚). During the execution, all test problems with 20 real variables (𝒏𝒙 = 𝟐𝟎)

 International Journal of Computers and Information, IJCI V11-1(2024) 44–61 53

and 20 integer variables (𝒏𝒚 = 𝟐𝟎) are considered. In addition, The penalization function u(z, a, k,

m) are used for problems 6 through 9 which is defined accordingly.

u(z, a, k, m) = {
𝒌(𝒛 − 𝒂), 𝒛 > 𝒂,

 𝟎, − 𝒂 ≤ 𝒛 ≤ 𝒂,
𝒌(−𝒛 − 𝒂), 𝒛 < 𝒂,

 (13)

The ACGMV and the ACGMVP parameters are listed in Table 1. It covers the description of our

algorithms indicated in the last section. Some parameters are defined in the literature according to

their standard values. Others parameter values are obtained through preliminary numerical

experiments.

The numerical results of our methods are presented in Table 2 through 50 independent runs with

termination conditions to find a solution with an error of le-3 or when the maximum number of

generations allowed is 200. The result indicates that the ACGMV takes more function evolution than

ACGMVP to find the optimal solution.

Furthermore, the ACGMV and ACGMVP methods solve the unconstrained benchmark test problems

as shown in Table 2. The numerical results of our methods obtained through 50 independent runs with

the termination conditions to find a solution with an error of le-3 or when the maximum number of

generations reached 200, are discussed in Table 3. Moreover, the ACGMV method has the success

rate 6.6667, 36.6667, 0.0000 and 3.3333 for g4, g6, g9 and g11, respectively. The results of applying

ACGMV method in which the success rate extents 100% for all the problems except when g6 reaches

84%. It is worth to mention that ACGMV method is promising in finding the new global optimal

values. However, it spends more function evolution to cover all parts of the search space. All other

methods that maintain g4. g6 and g9 have global value of 99.245, 4.5796, and 189.234, respectively,

but ACGMVP method obtained the global optima as 99.2399, 3.6203 and 0.01183, respectively.

Table (1): The Parameter Setting

Population size Psize

The structure of neighborhood

Crossover Prob

Mutation

Mutation. Prob

No of elite solution

Max-iter

5x5 (25 Individuals)

L5,C9

0.7

Uniform

0.05

20

200

54 A. Fahim

Table(2): Outcomes of ACGMV and ACGMVP techniques for unconstrained problems

F

f

F*

f*

ACGMV ACGMVP

fmean SR feval fmean SR feval

f1

f2

f3

f4

f5

f6

f7

f8

f9

0

1

0

0

0

0

0

0

0

6.34le–4

4.2526e6

168.525

1.067

0.337

8.409e–4

0.0201

0.055

0.4832

100

0

0

0

3.334

100

13.334

0

0

7993

45122

46136

52660

46111

19590

45600

46115

4609

0.436e–4

1.0008320

4.90e–4

0.020

4.668e–4

5.035e–4

4.897e–4

4.9017e–4

3.5715e–4

100

100

100

74

100

100

100

100

100

6332

26889

2588

46112

14845

35166

34655

10988

4687

Fig.(3) The block diagram of the performance of

ACGMVP for the g1 unconstrained problem

Fig.(4) The block diagram of the performance of
ACGMVP for the f1 constrained problem

The comparisons between the ACGMVP method and some other benchmark methods

[23,19] tabulated in Table 4 and 5 along with that of the unconstrained problems.

Tables 4 and 5 present the comparison between the ACGMVP method and the MIHDE/MIDE

method [23] using functions from f1 to f9. The comparison was done with one run. First, Table

4 shows the comparison with a fixed number of evaluation function. It is clear that the

ACGMVP method has better solutions for f1, f4, f5 and f8 problems, whereas the MIHDE/MIDE

method has a better solution for f3 problem, and both have almost the same values for the

remaining problems. Table 5 presents the second comparison under fixed function values.

Moreover, the ACGMVP method used a smaller number of evolution functions than

MIHDE/MIDE method on f1, f3, f5, f6 and f9 problems, whereas the MIHDE/MIDE method

used a smaller number of evolution functions for f4 and f8 problems, and both have almost

similar values for the remaining functions. Finally, the overall results demonstrate that the

ACGMVP method outperforms the MIHDE/MIDE method.

Three indicators are used for the comparison, including the mean of the function value, the

number of function evaluations and the success rate to reflect the efficiency of the ACGMVP,

FGA [19], D-GCE [16] , Ms+m–HJ–f [11], and EFA[15] methods in Table 6 to Table 9. For

fair comparisons, the termination criteria are specified to be identical to those described in

 International Journal of Computers and Information, IJCI V11-1(2024) 44–61 55

the methods. First, Table 6 shows the comparison between the ACGMVP and FGA methods

[19]. In all the problems, the ACGMVP method provides competitive solutions with less

number of evolution functions compared to the FGA method. Further, the FGA method

cannot find a feasible solution in g4 and g6, but the ACGMVP method achieves new global

optimal solutions for g4 and g6.
Table (3): Outcomes of ACGMV and ACGMVP techniques for constrained problems

G g* ACGMV ACGMVP

gmean SR geval gmean SR geval

g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11

g12

2

2.124

1.076574

99.2396

–6.66657

3.5578

–17

32217.4

0.01

–2.4444

3.2361

1.125

2.0005

2.124

1.0772

109.1805

–6.666

3.628

–16.999

32206

7.8391

–2.4443

5.5790

1.255

100

100

100

6.6667

100

36.6667

100

96.6667

0

100

3.3333

100

1316

2385

3156

19766

1530

24222

4153

22246

19755

164

19544

2635

2.000

2.1245

1.0771

99.2399

–6.6664

3.6203

–16.999

32217

0.01183

–2.4444

3.2363

1.125

100

100

100

100

100

84

100

100

100

100

100

100

201

1251

3151

671

665

28340

435

2597

1088

156

998

238

Table (4): Outcomes of the comparison between the ACGMVP and MIHDE/MIDE methods

F Nf-eval MIHDE/MIDE]23 [ACGMVP

f1

f3

f4

f5

f6

f7

f8

f9

16591

35724

17411

33136

10901

10737

10764

10112

9.1107e–11

9.3095e–7

8.49815e–7

9.02949e–7

7.667063e–7

9.6735e–7

8.5064e–7

9.1497e–3

5.3433e–12

9.2068e–5

2.6467e–10

7.3281e–8

9.1124e–7

7.5604e–7

8.2225e–8

4.0210e–7

Table (5): Outcomes of the comparison of the ACGMVP and MIHDE/MIDE methods

Table (6): Outcomes of the comparison between the ACGMVP and FGA methods

F f – value MIHDE/MIDE]23[ACGMVP

f1

f3

f4

f5

f6

f7

f8

f9

9.1107e–11

9.3095e–7

8.49815e–7

9.02949e–7

7.667063e–7

9.6735e–7

8.5064e–7

9.1497e–7

16591

35729

17411

33136

10901

10737

10764

10112

16463

29014

18785

18530

10268

10770

14381

9806

G g* ACGMVP FGA]19 [

feval Nfeval SR feval Nfeval SR

56 A. Fahim

Second, Table 7 shows the comparison between the ACGMVP and Ms+m–HJ–f methods [11] on problems g1,

g5, g6 and g9. That Ms+m–HJ–f method cannot find a feasible solution in g6 and go, whereas the ACGMVP

method can extend a global optimal solution in g6 and g9. Moreover, the ACGMVP method has superior solutions

with lower number of evolution functions than the D–GCE in g1 except in g5 where the number of evolution

function is comparatively higher. Table 8 shows the comparison between Based on the analysis above,

the ACGMV method obtains good results with lower number of evolution function than the D-GCE

in all the problems except in g8, where the number of function evaluations is low. The D–GCE methos

cannot find a feasible solution in g4 and g6 but, the ACGMVP method can reach a global solution.

Finally, Table 9 presents the comparison between the ACGMVP and EFA [15] methods on g1, g2, g3,

g7, g10 and g11 problems, the ACGMVP method obtains good results with the lowest number of

evolution functions.

Table (7): Outcomes of the comparison between the ACGMVP and Ms+m–HJ–f methods

Table (8): Outcomes of the comparison between the ACGMVP and D–GCE methods

Table (9) :Outcomes of the Comparison between the ACGMVP and EFA methods

g1

g2

g3

g4

g6

g7

g8

g10

g11

g12

2

2.124

1.076574

99.2396

3.5578

–17

32217.4

–2.4444

3.2361

1.125

2.000

2.1245

1.0771

99.2399

3.6203

-16,999

32217

-2.4444

3.2363

1.125

202

1250

3141

670

28339

436

2597

156

998

239

100

100

100

100

84

100

100

100

100

100

2.0005

2.1245

1.0772

Infeasible

Infeasible

-16.9995

32217

-2.4444

3.5087

1.1256

440

1769

3790

 ــ ـــــ

 ــ ـــــ

793

6053

231

2014

428

100

100

100

 ــ ـــــ

 ــ ـــــ

100

100

100

74

100

G G* ACGMVP Ms]11 [

geval Ngeval SR geval Ngeval SR

g1

g5

g6

g9

2

-

6.66657

3.5578

2.000

-6.6664

3.6203

0.01183

202

667

28339

1088

100

100

84

100

2.0002495

6.66639367

Infeasible

Infeasible

458

590

 ــ ـــــ

 ــ ـــــ

100

100

 ــ ـــــ

 ــ ـــــ

G g* ACGMVP D-GCE]16[

geval Ngeval SR geval Ngeval SR

g1

g2

g3

g4

g6

g8

2

2.124

1.076574

99.2396

3.5578

32217.4

2.000

2.1245

1.0771

99.2399

3.6203

32217

202

1250

3141

670

28339

2597

100

100

100

100

84

100

2.0000

2.124992

1.076544

Infeasible

Infeasible

32217

3704

1294

12416

 ــ ـــــ

 ــ ـــــ

609

100

100

100

 ــ ـــــ

 ــ ـــــ

100

G g* ACGMVP EFA]15 [

 International Journal of Computers and Information, IJCI V11-1(2024) 44–61 57

5. Adaptive Cellular Genetic Algorithm for Hard Clustering Problem

In this section, methodological components are presented.

5.1 Population Encoding

A population of solutions is composed of μ different weight matrices wk of size n × q, 𝒌 = 𝟏, . . . , 𝝁.

Each chromosome wk can be coded in two different formats as follows.

̶ wk is encoded into a vector vk of size n × 1. The entry j in vk is set to be equal to the cluster

number in which the pattern xj belongs.

̶ wk is also encoded into another array Ak = (a1,k,….., aq,k), where aj,k is the center of the

cluster Cj, j=1,...q, ie, a is computed using following equation:

aj,k =
∑𝒊=𝟏

𝒏 𝒘𝒊𝒋
𝒌 𝒙𝒋

∑𝒊=𝟏
𝒏 𝒘𝒊𝒋

𝒌 ,j = 1, ….., q. (14)

It should be noted that the cellular genetic operators use the above mentioned encoding systems for

simplicity. The function evolution of our hard cluster problem is presented in equation (8) as a MVO

problem. Thus, the ACGMV-HC algorithm used all the steps in the ACGMV algorithm with some

differences in dealing with the two formulae of population.

5.2 Computational Results

The ACGMV-HC algorithm is programmed in MATLAB and applied to solve three datasets;

̶ The first dataset of Bavarian postal zones includes 89 records with three attributes.

̶ The second Bavarian postal zones dataset is comparable to the first but includes four

additional attributes: the number of self-employed individuals, civil servants, clerks, and

manual laborers. Furthermore, there are 89 instances.

̶ The German towns database, which uses the Cartesian coordinates of 59 towns, has 59

records with two properties.

Table 9 presents the best-known global values. These values are given as nf(x*) where n is the number

of instances and x* is the global minimum point. These values are donated as fopt and the solution

found by the algorithm as f. The following formula is used to determine the error E reported for each

algorithm:

E =
𝒇− 𝒇𝒐𝒑𝒕

𝒇𝒐𝒑𝒕
 × 100 (15)

The results in Tables 10 and 11 show the comparison between our ACGMV-HC method with other

methods, like the k-means algorithm (K-M), the simulated annealing (SA), a genetic algorithm (GA),

the tabu search (TS), and an optimization-clustering algorithm (Algorithm1). The results of the

compared methods are taken from [4]. TS, GA, and SA have been applied to equation (8), which is

equivalent to a clustering problem's nonsmooth optimization formulation. Moreover, Algorithm1 has

been applied to equation (10).

geval Ngeval SR geval Ngeval SR

g1

g2

g3

g7

g10

g11

2

2.124

1.076574

-17

-2.44

3.2361

2.000

2.1245

1.0771

-16.999

-2.4444

3.2363

202

1250

3141

435

156

998

100

100

100

100

100

100

2.0000

2.7149

1.0767

-16.998

-2.4380

3.2361

3409

5253

5178

3243

3501

4405

100

80

100

100

98

100

58 A. Fahim

The result for the first dataset of Bavarian postal zones is shown in Table 10. The result shows that

the Algorithm1 method has the best result, whereas, the ACGMV-HC and GA methods have the same

result. Table 11 presents the result for the second Bavarian postal zones dataset. The ACGMV-HC

and algorithm methods have the same result. Table 12 presents the result for the German town's

dataset, Based on the result, the ACGMV-HC method has the best result followed by TS and GA

methods.

5.3.1 Wilcoxon signed-ranks test

A non-parametric technique called the Wilcoxon test is applied when testing a hypothesis using a

two-sample design [17,18]. It is a comparative test that attempts to determine if there are significant

differences in how two algorithms operate.

 Table (10): Outcomes of the result for the first Bavarian postal zones dataset

Table (11): Outcomes of the comparison between ACGMV-HC with other methods for first Bavarion postal

zones dataset

Table (12): Outcomes of the comparison between ACGMV-HC and other methods for second Bavarion postal

zones

The first Bavarian postal zone dataset

Q

fopt

2

0.60255e12

3

0.29451e12

4

0.10447e12

5

0.59762e11

ACGMV-HC 0.00 23.48 0.00 0.00

The second Bavarion postal zone dataset

Q

fopt

2

0.199080e11

3

0.17387e11

4

0.755908e10

5

0.540379e11

ACGMV-HC 144.28 0.00 0.00 0.00

The German towns dataset

Q

fopt

2

0.12142e6

3

0.77009e5

4

0.49601e5

5

0.3953e5

ACGMV-HC 0.00 0.00 0.00 0.00

Q

fopt

2

0.60255e12

3

0.29451e12

4

0.10447e12

5

0.59762e11

K-M

TS

GA

SA

Algorithm1

ACGMV-HC

7.75

0.00

0.00

0.00

0.00

0.00

23.48

23.48

23.48

23.48

0.00

23.48

166.88

18.14

0.00

0.39

0.00

0.00

335.32

33.35

0.00

40.32

0.00

0.00

 International Journal of Computers and Information, IJCI V11-1(2024) 44–61 59

Table (13): Outcomes of the comparison between ACGMV-HC with other methods for German towns

Q

fopt

2

0.12142e6

3

0.77009e5

4

0.49601e5

5

0.3953e5

K-M

TS

GA

SA

Algorithm1

ACGMV-HC

0.00

0.00

0.00

0.00

0.00

0.00

1.45

0.00

0.00

0.29

0.29

0.00

0.55

0.00

0.00

0.00

0.00

0.00

2.75

0.00

0.00

0.15

0.15

0.00

For tests computations, Let di be the comparison of two algorithms' performance scores on the i-th

position of the N results. The distinctions are arranged in order of their absolute values; in the event

of a tie, average ranks are assigned. Suppose R+ is the sum of ranks for functions on which the first

algorithm outperforms the second, and R– is the sum of ranks in opposite to R+. The ranks of di = 0

are evenly split among the sums. If there is an odd number of them, one is ignored: The p-value

associated with the comparison was determined using the Wilcoxon T statistic's normal T= min(R+,

R–) is the smallest of the sums. (Table B.12 in [31]). The equal-means null hypothesis is rejected.

approximation. (Section 6, Test 18 in [18]).

Table 14 presents Wilcoxon test results between our ACGMV-HC method and other methods K-M,

TS, GA, SA and Algorithm1. The result shows that the ACGMV-HC method is better than the TS and

SA methods.

 Table (14): Wilcoxon test results

Compared Methods Solution Qualities

Method 1 Method 2 R– R+ p-value Best Method

C

ACGMV-HC

ACGMV-HC

ACGMV-HC

ACGMV-HC

K-M

TS

GA

SA

Algorithm 1

73.5

48

39.5

68

39

4.5

30

36.5

10

39

0.0013

0.4944

0.7449

0.0234

0.7760

ACGMV-HC

-

-

ACGMV-HC

-

6. Conclusions and Future work

Q

fopt

2

0.199080e11

3

0.29451e12

4

0.10447e12

5

0.59762e11

K-M

TS

GA

SA

Algorithm1

ACGMV-HC

144.25

0.00

144.25

144.25

144.25

144.28

106.79

0.00

0.00

77.77

0.00

0.00

303.67

0.00

0.00

9.13

0.00

0.00

446.13

15.76

15.76

18.72

0.00

0.00

60 A. Fahim

ACGAMVP method has been proposed to solve MVO problems. However, The ACGAMVP

method's adaptive neighborhood construction process concentrates more emphasis on the

most successful individual. The computational results for 9 unconstrained and 12 constrained

benchmark test problems show the suggested method outperforms the other existing methods.

The suggested method achieved a new global point. Further, ACGMV-HC is used to solve

hard clustering problems as an MVO problem. Based on our simulation using three datasets,

the suggested method is more efficient. In future work, We can use our proposed method to

solve real problems as MVO problems such as scheduling problems. Also, ACGAMVP can be

modified to deal with MVO with high dimensions and used to solve multi-objective

functions.

References

1. N. A. AL-Madi, K. A. Maria and M. A. AL-Madi”A structured-population human community based

genetic algorithm (HCBGA) in a comparison with both the standard genetic algorithm (SGA) and the

cellular genetic algorithm (CGA)”. ICIC Express Letters, 12(12), 1267-1275, 2018.

2. E. Alba & B. Dorronsoro. “Cellular genetic algorithms book. Springer Science & Business Media,

2018.

3. P. Alberto, F. Nogueira, H. Rocha &L. Vicente. “Pattern search methods for user-provided points:

Application to molecular geometry problems”. SIAM Journal on Optimization, 14(4) 1216-1236,

2004.

4. A. Bagirov & J. Yearwood.” A new nonsmooth optimization algorithm for minimum sum-of-squares

clustering problems”. European journal of operational research, 170(2), 578-596, 2006.

5. T. Blickle & L. Thiele. “A comparison of selection schemes used in genetic algorithms”, Evolutionary

Computation 4.4 (1996): 361-394.

6. HH. Bock, HH. “Co-clustering for object by variable data matrices. Advanced studies in

behaviormetrics and data science”: essays in Honor of Akinori Okada (2020): 3-17.

7. O. Brudaru, A. Vilcu & D. Popovici. “Cellular Genetic Algorithm with Communicating Grids for a

Delivery Problem”. Symbolic and Numeric Algorithms for Scientific Computing (SYNASC), 2011

13th International Symposium on, 215-221, 2011.

8. M. Chakraborty & U.K. Chakraborty. “Branching process analysis of linear ranking and binary

tournament selection in genetic algorithms”. Journal of computing and information technology, 7(2),

107-113,2000.

9. Chebbi, O., Fatnassi, E., Chaouachi, J., & and Nouri, N.. Cellular Genetic Algorithm for Solving a

Routing On- Demand Transit Problem. Genetic and Evolutionary Computation Conference, 301- 308,

2016.

10. Y. hiou & L. Lan .” Genetic clustering algorithms”. European journal of operational research, 135(2),

413-427, 2001.

11. M. F. P.Costa, E. M. Fernandes and A. M. Rocha.” Multiple solutions of mixed variable optimization

by multistart Hooke and Jeeves filter method”. Applied Mathematical Sciences, 8, 2163-2179, 2014.

12. B. Dorronsoro, & E. Alba. “A simple cellular genetic algorithm for continuous optimization.

Evolutionary Computation”, CEC 2006. IEEE Congress on, 2838-2844, 2006.

13. B. Dorronsoro, & P.Bouvry, “ Adaptive neighborhoods for cellular genetic algorithms. Parallel and

Distributed Processing”. Workshops and Phd Forum (IPDPSW), IEEE International Symposium, 388-

394, 2011.

 International Journal of Computers and Information, IJCI V11-1(2024) 44–61 61

14. L. Escudero, M. A. Garín, M. Merino & G. Pérez .” On BFC-MSMIP strategies for scenario cluster

partitioning, and twin node family branching selection and bounding for multistage stochastic mixed

integer programming”. Computers & Operations Research, 37(4) 738-753, 2010.

15. M. F. P. Costa, & F. P.Fernandes, “Extension of the firefly algorithm and preference rules for solving

MINLP problems”. AIP Conference Proceedings. Vol. 1863. No. 1. AIP Publishing, 2018.

16. Y. Gao, Y. Sun & J. Wu. “Difference-genetic co- evolutionary algorithm for nonlinear mixed integer

programming problems”. Journal of Nonlinear Science and Its Applications, 9(3), 1261-1284, 2016.

17. S. García, A. Fernández, J. Luengo & F. Herrera. “A study of statistical techniques and performance

measures for genetics-based machine learning: accuracy and interpretability”. Soft Computing 13,959-

977, 2009.

18. A. Hedar, & M. Fukushima. “Minimizing multimodal functions by simplex coding genetic

algorithm”. Optimization Methods and Software, 18(3), 265-282, 2003.

19. A. Hedar & A. Fahim. “Filter-based genetic algorithm for mixed variable programming”. Numerical

Algebra, Control and Optimization, 1(1), 99-116, 2011.

20. F. Herrera, M. Lozano, & J. L. Verdegay. “Tackling real-coded genetic algorithms: Operators and

tools for behavioural analysis”, 12(4), 265-319,1998.

21. M. Laszlo & S. Mukherjee. “A genetic algorithm that exchanges neighboring centers for k-means

clustering”. Pattern Recognition Letters, 28(16), 2359-2366, 2007.

22. Ma. Li, Li. Qianting ,Ma. Meiqiong & Lv Sicong. “Optimization and Application of Single- point

Crossover and Multi-offspring Genetic Algorithm”. International Journal of Hybrid Information

Technology, 9(1), 1-8, 2016.

23. Y. Lin, K. Hwang & F. Wang. “A mixed-coding scheme of evolutionary algorithms to solve mixed-

integer nonlinear programming problems”. Soft ComputingComputers and Mathematics with

Applications, 47(8), 1295-1307, 2004.

24. J. Liu, K. Teo, X. Wang & Ch. Wu. “An exact penalty function-based differential search algorithm

for constrained global optimization”. Soft Computing, 20(4), 1305-1313, 2016.

25. S.Katoch, S.Chauhan & V. Kumar. “A review on genetic algorithm: past, present, and future.

Multimedia Tools and Applications”, 80(5), 8091-8126, 2011.

26. P. Raju, Y. Subash, and K. Rishabh. “EEWC. energy-efficient weighted clustering method based on

genetic algorithm for HWSNs”. Complex & Intelligent Systems, 6(2), 391-400, 2020.

27. Thomas Pogiatzis. “Application of mixed-integer programming in chemical engineering”. Ph.D.

thesis at University of combridge , 2013.

28. B. Sağlam, F. Salman, S. Sayın, S. & M.Türkay.” A mixed-integer programming approach to the

clustering problem with an application in customer segmentation”. European Journal of Operational

Research, 173(3), 866-879, 2006.

29. L. Sahoo, and A. Banerjee, A. K. Bhunia & S. Chattopadhyay. “An efficient GA-PSO approach for

solving mixed-integer nonlinear programming problem in reliability optimization”. Swarm and

Evolutionary Computation, 19, 43-51, 2014.

30. B. Shahriari, M. Ravari, S.Yousefi & M. Tajdari,.” A Heuristic Algorithm Based on Line-up

Competition and Generalized Pattern Search for Solving Integer and Mixed Integer Non-linear

Optimization Problems”. Latin American Journal of Solids and Structures, 13(2), 224-242, 2016.

31. Zar, & JH. “Cyber deception: Virtual networks to defend insider reconnaissance. In Biostatistical

Analysis”.. 4th ed.(Prentice-Hall: Englewood Cliffs, NJ.),2016.

32. Jianyun Zhang, Pei Liu, Zhe Zhou, Linwei Ma, Zheng Li, & Weidou Ni. “A mixed-integer nonlinear

programming approach to the optimal design of heat network in a polygeneration energy system”.

Applied Energy, Elsevier (pp. 146-154), 2014.

