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Abstract 

The cellular genetic algorithm (CGA) improves the genetic algorithm for a subclass(GA) with a 

dispersed population where an exchange of individuals is limited to close neighbors. In this research, 

the adaptive cellular genetic algorithm (ACG) is applicable to better explore the search space. The 

ACG algorithm assists in reaching the optimal solution as quickly as possible. Various problems 

regarding mixed variable optimization (MVO) problems arise in numerous models and real 

applications. We applied the ACG algorithm to deal with the MVO problem, which is called the 

adaptive cellular genetic mixed variable ACGMV method.  ACGMV algorithm performance is 

evaluated using a number of benchmark test issues. The experimental findings indicate that the 

ACGMV algorithm performs better than other methods. In addition, we applied ACGMV to solve the 

hard data-clustering problem. which is called ACGMV-HC. The data clustering problem is 

formulated using the mixed-variable programming methodology. Based on our result, the ACGMV-

HC algorithm is more effective than other methods  
 
Keywords: Mixed variable optimization; Cellular genetic algorithm;  hard cluster.  

1. Introduction  

One of the most widely used metaheuristic algorithms for efficient random search is the genetic 

algorithm (GA). Metaheuristics algorithms' main benefit is that they provide a balance in finding the 

global optimum of optimization problems in a reasonable amount of time. The GA operates on a 

population set and employs stochastic procedures which are known as genetic procedures (selection, 

crossover, and mutation) [25]. 

GA includes a cellular genetic algorithm (CGA) with a spreading population whereas the exchange 

between individuals is limited to close neighbors. To prevent the rapid convergence of GA, we 

disperse the population which permits the preservation of the population diversity, resulting in better 

investigation of the search area. Thus, the enactment of the algorithm [13]. 

In this study, the grid structure of the adaptive cellular genetic algorithm (ACGA) method is applied 

to achieve convergence in a short time. The ACGA is based on work on the neighborhood selection. 

The major goal of our algorithm is the selection of neighborhoods from the grid to achieve a more 

equitable balance between extraction and exploration. The selection of neighborhood members is 

adaptive to provide diversification in exploring the search space, and intensification, especially on 

the most effective solutions to find the optimal solution faster. 

https://ijci.journals.ekb.eg/
mailto:alaa@aun.edu.eg
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The MVO has been a subject of interest for many researchers due to its various models and 

applications. The MVO is used in many areas, such as chemical engineering [27], harvesting machine 

systems modeling [22], and heat network designing in an energy system [32]. There are several 

methods to solve MVO problems including filter GA [19], hybrid method according to particle swarm 

optimization and genetic algorithm [29], multistart Hooke and Jeeves filter method [11], difference-

genetic co-evolutionary algorithm [16], heuristic algorithm using line-up competition and pattern 

search [30], The coordinate search filter algorithm is based on branches and bounds [15]. 

There are many methods tried to solve mixed variable programming problems [11,16,19,23]. M. 

Costa[11]  introduced a multistart method which utilized an extended iteration of the Hooke and 

Jeeves algorithm to calculate multiple solutions for mixed variable optimization problems. Y. 

Gao[16] solved a constraint bi-objective mixed variable optimization issue using the difference co-

evolution algorithm., A. Hedar [19]  developed a hybrid genetic algorithm and filter method as a local 

technique to handle mixed variable optimization problems with and without constraints. Y. Lin [23] 

introduced the hybrid differential evaluation to achieve optimal solutions for mixed variable 

optimization problems. In this paper, the adaptive cellular genetic for mixed variable (ACGMV) 

algorithm is used to solve mixed variable optimization (MVO) problems. 

  In this study, the ACGMV algorithm is applied to solve MVO problems. It provides a superior 

quality of solutions, which are examined by 9 unconstrained and 12 benchmark test problems. A 

pattern search technique is included in the ACGMV algorithm to improve the exploitation and obtain 

the optimal solution faster. The ACGMVP makes the pattern around the best solutions to make the 

intensification around them. 

Furthermore, data clustering [21,26] means dividing data into groups of like objects. Data clustering 

is relevant to a wide variety of fields and is critical in a wide variety of applications. Data clustering 

is typically used to analyze huge datasets and data with a significant number of attributes, such as 

document extraction, image segmentation, market research, and social network analysis. The majority 

of methods for data clustering are based on the two most prevalent techniques: hierarchical and 

partitional. The output is a tree in the hierarchical clustering that shows a sequence of clusters, each 

cluster containing a partition of a dataset. On the other hand, algorithms for partitional clustering 

categorize the data set into a predetermined number of groups. Data clustering is classified into two 

types: fuzzy, and hard clustering.  hard clustering is considered in this work. 

Many attempts are made to handle the hard clustering problem with GAS. A GA-based clustering 

technique [26] has been applied to provide an optimal clustering regarding the clustering metric in 

[21], GAS has a novel sort of crossover operator that has good partitions by exchanges neighboring 

centers but regrettably does not reach high-dimensional datasets. In [10], GAS is used to study the 

effectiveness and efficiency of employing GAS. 

The clustering issue can be reduced to an optimization issue. However Many optimization issues can 

be phrased as a clustering problem, which is an interesting observation. In this paper, ACGA is 

applied to the Hard Clustering problem (denoted by ACGA-HC) using the MVO problem. To our 

knowledge, just a handful of attempts [14, 28] to solve the difficult clustering problem as MVO 

formulation. According to our computational findings, the ACGA-HC m technique surpasses other 

available methods. 
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The remainder of the paper is arranged accordingly. The concept of a CGA method, the MVO 

problem, and various mathematical formulas for the hard clustering problem are presented in Section 

2. Section 3 describes ACGMV algorithms and their components. The computational results of the 

proposed methods are introduced in Section 4. In Section 5, the computational experiments are 

presented using the ACGA-HC method and the comparison of our method with other methods in 

three different datasets. Conclusion and future work are discussed in Section 6. 

 

2. Preliminaries 

The notions will be demonstrated to be utilized in the suggested procedure. 

2.1. Cellular Genetic Algorithm 

The CGA is a type of GA that allows for a more thorough search space exploration and 

algorithm implementation [13]. CGA's intersecting small neighborhoods help to explore the 

area of search because they provide a slow distribution of solutions throughout the 

population. It provides an exploration (diversification) of the population, while exploitation 

(intensification) happens within each neighborhood by genetic operations [1]. The population 

in GA could be decentralized in two main ways: cellular GA (CGA) and distributed GA 

(DGA) [2]. In DGA, the population is divided into various minor subpopulations that 

exchange some information with one another. Hence, each island's GA investigates a separate 

search space region, thereby conserving the entire population diversity. In CGA, an 

individual can relate to the breeding ring. The main difference between DGA and CGA is 

how their populations are structured. 

CGA's purpose is to allow the population structure reshaped as a connected graph, in 

communication with its closest neighbors. A toroidal mesh is used to map each individual 

[2]. Here, the grid boundary individuals are connected with individuals in the same row or 

column on the opposite borders. As a result, a toroidal grid is formed in which each individual 

has precisely the same number of neighbors. Each grid point has a neighborhood that 

intersects with surrounding residents' neighborhoods. Each neighborhood is identical in size 

and shape. Furthermore, for every individual, there are six typical neighborhood structures: 

L5, L9, C9, C13, C21 and C25 [2]. 

̶ L5: This is also called Linear5, NEWS or von Neuman. The four closest members—

North, East, West, and South—make up its 4 nearest individuals. 

̶ C9 (Compact9): C9 is also called Moore neighborhood. Here The neighborhood is 

made up of the central person and the eight others nearby. -L9 (Linear9): It consists 

of the central individual and its two nearest neighbors along the horizontal and 

vertical axes. 

̶ C13 (Compact13): Combining L9 and C9 communities created this neighborhood.  

̶ C21 (Compact21): It is composed of the 20 individuals in the horizontal, vertical, 

and diagonal directions from the one in the center. 

̶ C25 (Compact25): It consists of 24 individuals surrounding the individual under 

consideration. 



 International Journal of Computers and Information, IJCI V11-1(2024) 44–61              47 

When variation operators are utilized, individuals in CGA can only swap with their neighbors 

during the reproductive cycle. These reproductive processes occur within the selected 

individual and its neighborhood. The process includes selecting two parents through the 

current individual and its neighbors, putting the operators for variation to work on them 

(selection, crossover, and mutation), and substituting the created offspring for the considered 

individual. 

 

 

 

 

 

 

 

       Fig. (1):The block diagram of  four common neighborhood structures in CGA. 

Moreover, Asynchronously or synchronously updating cells is an option [12]. All the cells in 

synchronous (parallel) are updated at once, whereas in asynchronous or sequential updates, 

each cell is updated. Furthermore, we have a better concept of selection behavior in 

asynchronous CGA than in the synchronous update. In addition, there are four distinct 

methods for sequentially updating CGA cells: fixed line sweep (FLS), new random sweep 

(NRS), fixed random sweep (FRS), and uniform choice (UC) [2]. 

̶ In the FLS update, the n grid cells are sequentially updated in a row. It is the simplest 

method.  

̶ For the FRS, with no  replacement, A uniform probability is used to select the next 

cell to be updated, resulting in a specific update sequence. (𝒄𝟏
𝒋
, 𝒄𝟐

𝒌,…, 𝒄𝒏
𝒎), where 𝒄𝒒

𝒑
 

indicates that cell number p has been updated at time q and (j, k, ....., m) is a 

permutation of the n cells. All updated cycles employ the same permutation. 

̶ NRS functions similarly to FRS with the exception that for each sweep of the array, 

a new random cell permutation is used. 

̶ In the UC updating method, the next cell to be updated is replaced with a uniform 

probability after a random selection. This pertains to the binomial distribution for the 

updated probability. 

It should be noted that hierarchical CGA depends on how GA relies on how the best 

individuals are moved to the center of the grid, so that better solutions may be obtained 

rapidly, while individuals preserve new solutions for exploring the search space. Moreover, 
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CGA is used for manipulating continuous optimization problems [12] and is applied in many 

areas such as transportation [9]. 

2.2. Mixed Variable Optimization Problem 

The general mathematical form of MVO problems, which contain both integer and 

continuous variables, is given as the following equation 1: 

              Min    f (r,s),     (1) 

                      Subject to    𝝓𝒊(𝒓, 𝒔) ≤  𝟎,        𝒊 =  𝟏, … , 𝒏,                               (2) 

𝝍𝒋(𝒓, 𝒔) =  𝟎,      𝒋 =  𝟏, … , 𝒎,                                (3) 

𝒍𝒓  ≤  𝒓 ≤  𝒖𝒓,     𝒍𝒔  ≤  𝒔 ≤  𝒖𝒔,                             (4) 

                             𝒓 =  𝒓𝟏, 𝒓𝟐, … , 𝒓𝒏𝒓,     𝒔 =  𝒔𝟏, 𝒔𝟐, … . , 𝒔𝒏𝒔. 

Where 𝒓, 𝒍𝒓, 𝒖𝒓  ∈  𝑹𝒏𝒓, 𝒔, 𝒍𝒔, 𝒖𝒔  ∈  𝒁𝒏𝒔 ,  nr and ns are the number of continuous and 

discrete variables respectively, 𝒍𝒓  and 𝒖𝒓 are the lower and upper bounds for continuous 

variables,  1s and us are the vectors of the lower and upper bounds for the integer variables 

respectively. Assume that the functions f,  𝝓𝒊, 𝒊 = 𝟏, . . . , 𝒏 and 𝝍𝒋, 𝒋 =  𝟏, . . . , 𝒎  are 

nonconvex. The penalty approach [24] was used to convert a constrained optimization issue 

to an unconstrained optimization problem whose the solution must converge to the standard 

constrained problem solution. 

2.3 Hard Clustering Problem 

In cluster analysis, it is assumed that X consists of a finite number of d-dimensional points 

Rd, is given as following: 

𝑿 =  {𝒙𝟏, . . . , 𝒙𝒏}, where 𝒙𝒊  ∈  𝑹𝒅, 𝒊 =  𝟏, . . . , 𝒏.                 

The set X is partitioned into a given number q disjoint clusters 𝑪𝒊, 𝒊 =  𝟏, . . . , 𝒒. 

𝑿 =  ⋃ 𝒄𝒊

𝒒

𝒊=𝟏

           (5) 

Where sets 𝑪𝒊, 𝒊 =  𝟏, . . . , 𝒒. are called clusters. As mentioned before, there are two kind of 

clustering problems: hard and fuzzy clustering problem. 

- Hard clustering problem : Here, Each data point is associated with a single cluster. 

- Fuzzy clustering problem: The clusters overlap here, and each member appears to 

various degrees in each cluster. 

For the investigated the hard clustering problem, so we assume that  

𝑪𝒊  ∩  𝑪𝒌  =  𝝋, ∀𝒊, 𝒌 =  𝟏, … , 𝒒, 𝒊 ≠  𝒌.     (𝟔) 

Further, clustering is reduced to an optimization problem as follows: 
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𝒎𝒊𝒏 𝝋 (𝑪, 𝑨)  = 
𝟏

𝒏
 ∑ ∑ ǁ ∈𝑪𝒊

𝒒
𝒊=𝟏 𝒙 ai – xǁ2,   (7) 

Where  𝑪 ∈  �̅�, 𝒂𝟏, … . , 𝒂𝒒  ∈  𝑹𝒅,   ||.|| denote the Euclidean norm, A set of clusters 𝑪 =

 {𝑪𝟏, . . . , 𝑪𝒒}, �̅� is a set of all the possible q-partition of the set X, and aj is the center of 

cluster Cj defined as follows:   𝒂𝒋  =  
𝟏

ǀ𝑪𝒋ǀ
 ∑ 𝒙,𝒙∈𝑪𝒋

 

And ǀ𝑪𝒋ǀ is the cardinality of the set 𝑪𝒋, 𝒋 = 𝟏, … , 𝒒. The clustering problem in equation (7) 

is referred to as the clustering problem with the minimal sum of squares. 

Equation (7) can be rewritten as mixed variable problem, as shown below [8]: 

min ψ (A ,w) = 
𝟏

𝒏
 ∑ ∑ 𝒘𝒊𝒋

𝒒
𝒋=𝟏

𝒏
𝒊=𝟏 ǁaj – xiǁ2,   (8) 

Where                          ∑ 𝒘𝒊𝒋
𝒒
𝒋=𝟏 = 1, 𝒊 =  𝟏, … , 𝒏,                              (9) 

And  𝒘𝒊𝒋   ∈  {𝟎, 𝟏}, 𝒊 =  𝟏, . . . , 𝒏, 𝒋 =  𝟏, … . . , 𝒒. 

Here,                        𝒂𝒋  =  
∑ 𝒘𝒊𝒋𝒙𝒋𝒏

𝒊=𝟏

∑ 𝒘𝒊𝒋
𝒏
𝒊=𝟏

, 𝒋 =  𝟏, … , 𝒒,  

And 𝒘𝒊𝒋 is the association weight of pattern xi with cluster Cj, given by 

𝒘𝒊𝒋 =  {
𝟏, 𝒊𝒇 𝒕𝒉𝒆 𝒑𝒂𝒕𝒕𝒆𝒓𝒏 𝒊 𝒊𝒔 𝒂𝒍𝒍𝒐𝒄𝒂𝒕𝒆𝒅 𝒕𝒐 𝒄𝒍𝒖𝒔𝒕𝒆𝒓 𝒋

∀𝒊 = 𝟏, … . , 𝒏, 𝒋 = 𝟏, … . . , 𝒒,                          
𝟎, 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆                                                          

  

The distance between centers and the dataset is calculated using the following equation. 

DM = ∑ ∑ 𝒘𝒊𝒋
𝒒
𝒋=𝟏

𝒏
𝒊=𝟏  ǁaj – xiǁ2,    (10) 

Furthermore, equations (7) and (10) can be reformulated as a mathematical programming 

problem, as follows. 

𝒎𝒊𝒏 𝒇(𝒂𝟏, … , 𝒂𝒒),    (11) 

Where  𝑨 =  (𝒂𝟏, . . . . , 𝒂𝒒) ∈  𝑹𝒅×𝒒, and  f(a1, ...., aq) = 
𝟏

𝒏
 ∑ 𝒎𝒊𝒏𝒏

𝒊=𝟏 j=1,…., qǁa2 – xiǁ2 

In this paper, Equation (8) is considered as a mixed variable optimization problem. It is 

shown in [6] that equations (7), (8) and (10) are equivalent. (n + d) x q is the number of 

variables in equations (8) as in equation (10). It is d x q with the number of variables being 

independent of the number of instances. However, in the hard clustering problem, the 

coefficients wij vary form 0-1 variables, which means, equation (8) has both continuous and 

integer variables. 

3. Adaptive Cellular Genetic Algorithm for Mixed Variable Optimization Problem 
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Individuals produced at random to rearrange on a 2-D toroidal grid constitute the ACGMV 

algorithm's implementation (achieved by encircling one another in the columns and rows). 

an asynchronous FLS type are chosen for updating the cells. In addition to, the selection of 

neighbors is depending to the quality of the individual. The updating in the grid is very 

important aspect. A small population P are formed from the selected individual and its 

neighbors in which the genetic operators operate (selection, crossover, and mutation) that 

allow exploration in every selected individual are used. In order to intensify the search for 

the best solutions, a pattern search is lastly added to the ACGMV approach to create 

ACGMVP. The following are the components of the proposed method: 

3.1. Initialization 

The initial population is made up of individuals that are distributed uniformly within the 

search space that is restricted by [1, u]. 

3.2. Mapping on the Grid 

Individuals are mapped from best to worst on a two-dimensional toroidal grid. In the case 

of a population of size μ, we set up in a √𝝁 × √𝝁 (assuming μ odd).  in the case of a 

population of size μ. An individual is represented on the grid z = (x1, x2, …., xnx,y1, y2, ….., 

yny), where position (z) is at (i, j) on the toroidal grid[7]. 

3.3. Neighborhood 

In ACGMV, Each individual chooses few a neighborhoods using different criteria as shown 

in Fig.(1). The neighborhoods are chosen in our strategy based on using L5 process for all 

individuals except for the best individuals, where the selection of neighborhoods is done via 

C9 process. The individual and its neighborhood together create a small population. Genetic 

operators are applied to this small population P. 

3.4 Selection 

The selection technique generates a med population, denoted P', from the existing small 

population P. The more is the number of fit individuals in P, the higher is the probability of 

selection in P'. This procedure is repeated until p is complete. The probability for the 

population size u is determined as follows: 

Pi = 
𝟏

𝝁
 (ζmax – (ζmax – (ζmin) 

𝒊−𝟏

𝝁−𝟏
) i =1,...,μ,   (12) 

Where ζmax + ζmin = 2 and 1 ≤ ζmax ≤ 2. Individuals in P' are chosen using the linear ranking 

selection mechanism [5] according to the steps outlined in Procedure 1. 

Procedure 1 Linear Ranking Selection 

1. Put 𝒔𝟎  =  𝟎. 

2. 𝒔𝒊  =  𝒔𝒊−𝟏 +  𝒑𝒊 for all 𝒊 =  𝟏, . . . , 𝝁. 

3. 𝒊 =  𝟏, . . . , 𝝁 do steps 4,5.  

4. Generate a random number γ ∈ [0, si]. 

5. Put  P1 in 𝑷𝒊
′ where 𝒔𝒊−𝟏   ≤  𝜸 ≤  𝒔𝒊. 
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3.5 Crossover 

First, for each individual in P', the crossover procedure generates a number in the interval 

(0, 1) randomly. The individual is added to the pool known as the parent pool if the 

generated number is less than the crossover probability Pc. Next, every two parent's p1 and 

p2 are randomly selected from the parent pool. Two offsprings o1 and o2 is produced by an 

arithmetical crossover [20] occurs between the two selected parents using the following 

procedure 2: 

Procedure 2 Arithmetical Crossover(p1, p2, o1,o2) 

1. Generate a random number γ ∈ (0, 1). 

2. Let p1 = (x1, y1) and p2 = (x2, y2). 

3. Calculate the recombined offspring o1 = (r1,s1) and o2 (r2, s2), where 

r1 = γ x1 + (1 – γ) x2, 

s1 = ]γ y1 + (1 – γ) y2[, 

r2 = (1 – γ) x1 + y x2, 

s2 = ](1 – γ)y1 + γy2[. 

4. Return. 

The function ⌈.⌉ represents the upper rounds of the elements, which is the nearest integer 

available to the discrete variable y. 

3.6 Mutation 

This operator replaces the gene's selected value from a uniform distribution with its lower 

and upper limits. For every gene on each chromosome (individual) and P', a random number 

between 0 and 1 is generated. If the produced number is less than the mutation probability 

Pm, the chromosome is mutated. Let and represent the selected gene and chromosome 

numbers, correspondingly. The mutated offspring z is then computed based on the following: 

Procedure 3 Uniform Mutation 

1. If the selected gene λ is continuous, update 𝒛𝜽 by setting 𝑷𝝀
𝜽= 𝒍𝒙𝝀  +  𝜸(𝒖𝒙𝝀  – 𝒍𝒙𝝀). 

2. If the selected gene λ is integer, update 𝒛𝜽 by setting 𝒚𝝀
𝜽= 𝒍𝒚𝝀  +  𝜸(𝒖𝒚𝝀 – 𝒍𝒙𝝀), 

where γ∈(0, 1). 

3.7 Replacement (Update the Grid) 

After the reproductive cycle, our current individual is derived from the highest quality 

solution in the small population P. (i.e, the selection, crossover, and mutation procedure). 

3.8 Pattern Search 

Pattern search method (PSM) is used to enhance the quality of some exceptional offspring. 

Particularly, some reformed variants of PSM are used to tackle the current problem. PSM's 

input values and parameters are reset to include both continuous and integer settings. 

Modifications are made to the PSM to reduce the cost function. The modified PSM then 

utilizes the set D in a distinct manner. 

D = {(±1)he1,..... (±1)hen}, 

Where h is random number h ∈ {1, 2}. Therefore, every iteration of the modified PSM 

generates only n + 1  points. 
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Procedure 4 Pattern Search Process 

1. Select an x0 as initial solution, set a step size Δ0 > 0 for  for a positive spanning 

directions D, and set the counter number k = 0. 

2. The grid G are generated around the initial solution. If there is an improvement in 

the grid, go to Step 4. 

3. Compute the poll set PSk. At each point in PSk, evaluate the cost function. 

4. If an improved individual obtained in Step 2 or 3, set xk+1 f equal to this improved 

point, and set Δk+1 ≥ Ak. Otherwise, set x+ = xk, and Δk+1 < Δk. 

5. Stop if the termination conditions are met. Otherwise, set k = k + 1, and go to Step 2. 

3.9 ACGMVP Algorithm 

Figure 2 illustrates the ACGMVP component. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.(2) The block diagram of ACGMVP flowchart  

4. Result and Discussion 

The parameters setting for our proposed method will be discussed. The ACGMV and the ACGMVP 

methods are coded in MATLAB. Our methods are applied to solve 9 benchmark unconstrained 

problems. f1 to f9 and 12 benchmark constrained problems g1 to g12, as shown in [19]. The properties 

of these problems are sufficiently diverse to encompass numerous categories of difficulty.  

The mixed-integer variable in test problems from f1 to f9 are defined as  𝒛 =

 (𝒙𝟏, … . , 𝒙𝒏𝒙, 𝒚𝟏, . . . , 𝒚𝒏𝒚). During the execution, all test problems with 20 real variables (𝒏𝒙  =  𝟐𝟎)  
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and 20 integer variables (𝒏𝒚  =  𝟐𝟎 ) are considered. In addition, The penalization function u(z, a, k, 

m) are used for problems 6 through 9 which is defined accordingly. 

u(z, a, k, m) = {
𝒌(𝒛 − 𝒂),        𝒛 > 𝒂,                                                  

 𝟎,                   − 𝒂 ≤ 𝒛 ≤ 𝒂,                                          
𝒌(−𝒛 − 𝒂), 𝒛 < 𝒂,                                                       

 (13) 

The ACGMV and the ACGMVP parameters are listed in Table 1. It covers the description of our 

algorithms indicated in the last section. Some parameters are defined in the literature according to 

their standard values. Others parameter values are obtained through preliminary numerical 

experiments. 

The numerical results of our methods are presented in Table 2 through 50 independent runs with 

termination conditions to find a solution with an error of le-3 or when the maximum number of 

generations allowed is 200. The result indicates that the ACGMV takes more function evolution than 

ACGMVP to find the optimal solution. 

Furthermore, the ACGMV and ACGMVP methods solve the unconstrained benchmark test problems 

as shown in Table 2. The numerical results of our methods obtained through 50 independent runs with 

the termination conditions to find a solution with an error of le-3 or when the maximum number of 

generations reached 200, are discussed in Table 3. Moreover, the ACGMV method has the success 

rate 6.6667, 36.6667, 0.0000 and 3.3333 for g4, g6, g9 and g11, respectively. The results of applying 

ACGMV method in which the success rate extents 100% for all the problems except when g6 reaches 

84%. It is worth to mention that ACGMV method is promising in finding the new global optimal 

values. However, it spends more function evolution to cover all parts of the search space. All other 

methods that maintain g4. g6 and g9 have global value of 99.245, 4.5796, and 189.234, respectively, 

but ACGMVP method obtained the global optima as 99.2399, 3.6203 and 0.01183, respectively. 

 

Table (1): The Parameter Setting 

Population size Psize 

The structure of neighborhood  

Crossover  Prob 

Mutation 

Mutation. Prob 

No of elite solution  

Max-iter 

5x5 (25 Individuals) 

L5,C9 

0.7 

Uniform 

0.05 

20 

200  
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Table( 2): Outcomes of ACGMV and ACGMVP techniques for unconstrained problems 

F 

f 

F* 

f* 

ACGMV ACGMVP 

fmean SR feval fmean SR feval 

f1 

f2 

f3 

f4 

f5 

f6 

f7 

f8 

f9 

0 

1 

0 

0 

0 

0 

0 

0 

0 

6.34le–4 

4.2526e6 

168.525 

1.067 

0.337 

8.409e–4 

0.0201 

0.055 

0.4832 

100 

0 

0 

0 

3.334 

100 

13.334 

0 

0 

7993 

45122 

46136 

52660 

46111 

19590 

45600 

46115 

4609 

0.436e–4 

1.0008320 

4.90e–4 

0.020 

4.668e–4 

5.035e–4 

4.897e–4 

4.9017e–4 

3.5715e–4 

100 

100 

100 

74 

100 

100 

100 

100 

100 

6332 

26889 

2588 

46112 

14845 

35166 

34655 

10988 

4687 

 

 

 

 

 

 

 

Fig.(3) The block diagram of the performance of 

ACGMVP for the g1 unconstrained problem 

 

Fig.(4) The block diagram of the performance of 
ACGMVP for the f1 constrained problem 
 

The comparisons between the ACGMVP method and some other benchmark methods 

[23,19] tabulated in Table 4 and 5 along with that of the unconstrained problems. 

Tables 4 and 5 present the comparison between the ACGMVP method and the MIHDE/MIDE 

method [23] using functions from f1 to f9. The comparison was done with one run. First, Table 

4 shows the comparison with a fixed number of evaluation function. It is clear that the 

ACGMVP method has better solutions for f1, f4, f5 and f8 problems, whereas the MIHDE/MIDE 

method has a better solution for f3 problem, and both have almost the same values for the 

remaining problems. Table 5 presents the second comparison under fixed function values. 

Moreover, the ACGMVP method used a smaller number of evolution functions than 

MIHDE/MIDE method on f1, f3, f5, f6 and f9 problems, whereas the MIHDE/MIDE method 

used a smaller number of evolution functions for f4 and f8 problems, and both have almost 

similar values for the remaining functions. Finally, the overall results demonstrate that the 

ACGMVP method outperforms the MIHDE/MIDE method. 

Three indicators are used for the comparison, including the mean of the function value, the 

number of function evaluations and the success rate to reflect the efficiency of the ACGMVP, 

FGA [19], D-GCE [16] , Ms+m–HJ–f [11], and EFA[15]  methods in Table 6 to Table 9. For 

fair comparisons, the termination criteria are specified to be identical to those described in 
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the methods. First, Table 6 shows the comparison between the ACGMVP and FGA methods 

[19]. In all the problems, the ACGMVP method provides competitive solutions with less 

number of evolution functions compared to the FGA method. Further, the FGA method 

cannot find a feasible solution in g4 and g6, but the ACGMVP method achieves new global 

optimal solutions for g4 and g6.  
Table (3): Outcomes of ACGMV and ACGMVP techniques for constrained problems 

G g* ACGMV ACGMVP 

gmean SR geval gmean SR geval 

g1 

g2 

g3 

g4 

g5 

g6 

g7 

g8 

g9 

g10 

g11 

g12 

2 

2.124 

1.076574 

99.2396 

–6.66657 

3.5578 

–17 

32217.4 

0.01 

–2.4444 

3.2361 

1.125 

2.0005 

2.124 

1.0772 

109.1805 

–6.666 

3.628 

–16.999 

32206 

7.8391 

–2.4443 

5.5790 

1.255 

100 

100 

100 

6.6667 

100 

36.6667 

100 

96.6667 

0 

100 

3.3333 

100 

1316 

2385 

3156 

19766 

1530 

24222 

4153 

22246 

19755 

164 

19544 

2635 

2.000 

2.1245 

1.0771 

99.2399 

–6.6664 

3.6203 

–16.999 

32217 

0.01183 

–2.4444 

3.2363 

1.125 

100 

100 

100 

100 

100 

84 

100 

100 

100 

100 

100 

100 

201 

1251 

3151 

671 

665 

28340 

435 

2597 

1088 

156 

998 

238 

Table (4): Outcomes of the comparison between the ACGMVP and MIHDE/MIDE methods 

F Nf-eval MIHDE/MIDE]23 [ ACGMVP 

f1 

f3 

f4 

f5 

f6 

f7 

f8 

f9 

16591 

35724 

17411 

33136 

10901 

10737 

10764 

10112 

9.1107e–11 

9.3095e–7 

8.49815e–7 

9.02949e–7 

7.667063e–7 

9.6735e–7 

8.5064e–7 

9.1497e–3 

5.3433e–12 

9.2068e–5 

2.6467e–10 

7.3281e–8 

9.1124e–7 

7.5604e–7 

8.2225e–8 

4.0210e–7 

Table (5): Outcomes of the comparison of the ACGMVP and MIHDE/MIDE methods 

 

 

 

 

 

 

                      

Table (6): Outcomes of the comparison between the ACGMVP and FGA methods 

F f – value MIHDE/MIDE]23[ ACGMVP 

f1 

f3 

f4 

f5 

f6 

f7 

f8 

f9 

9.1107e–11 

9.3095e–7 

8.49815e–7 

9.02949e–7 

7.667063e–7 

9.6735e–7 

8.5064e–7 

9.1497e–7 

16591 

35729 

17411 

33136 

10901 

10737 

10764 

10112 

16463 

29014 

18785 

18530 

10268 

10770 

14381 

9806 

G g* ACGMVP FGA]19 [ 

feval Nfeval SR feval Nfeval SR 
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Second, Table 7 shows the comparison between the ACGMVP and Ms+m–HJ–f methods [11] on problems g1, 

g5, g6 and g9. That Ms+m–HJ–f method cannot find a feasible solution in g6 and go, whereas the ACGMVP 

method can extend a global optimal solution in g6 and g9. Moreover, the ACGMVP method has superior solutions 

with lower number of evolution functions than the D–GCE in g1 except in g5 where the number of evolution 

function is comparatively higher. Table 8 shows the comparison between Based on the analysis above, 

the ACGMV method obtains good results with lower number of evolution function than the D-GCE 

in all the problems except in g8, where the number of function evaluations is low. The D–GCE methos 

cannot find a feasible solution in g4 and g6 but, the ACGMVP method can reach a global solution. 

Finally, Table 9 presents the comparison between the   ACGMVP  and EFA [15] methods on g1, g2, g3, 

g7, g10 and g11 problems, the ACGMVP method obtains good results with the lowest number of 

evolution functions. 

Table (7): Outcomes of the comparison between the ACGMVP and Ms+m–HJ–f methods 

 

Table (8): Outcomes of the comparison between the ACGMVP and D–GCE methods 

 

 

 

Table (9) :Outcomes of the Comparison between the ACGMVP and EFA methods 

g1 

g2 

g3 

g4 

g6 

g7 

g8 

g10 

g11 

g12 

2 

2.124 

1.076574 

99.2396 

3.5578 

–17 

32217.4 

–2.4444 

3.2361 

1.125 

2.000 

2.1245 

1.0771 

99.2399 

3.6203 

-16,999 

32217 

-2.4444 

3.2363 

1.125 

202 

1250 

3141 

670 

28339 

436 

2597 

156 

998 

239 

100 

100 

100 

100 

84 

100 

100 

100 

100 

100 

2.0005 

2.1245 

1.0772 

Infeasible 

Infeasible 

-16.9995 

32217 

-2.4444 

3.5087 

1.1256 

440 

1769 

3790 

 ــ  ـــــ

 ــ  ـــــ

793 

6053 

231 

2014 

428 

100 

100 

100 

 ــ  ـــــ

 ــ  ـــــ

100 

100 

100 

74 

100 

G G* ACGMVP Ms]11 [ 

geval Ngeval SR geval Ngeval SR 

g1 

g5 

g6 

g9 

2 

- 

6.66657 

3.5578 

2.000 

-6.6664 

3.6203 

0.01183 

202 

667 

28339 

1088 

100 

100 

84 

100 

2.0002495 

6.66639367 

Infeasible 

Infeasible 

458 

590 

 ــ  ـــــ

 ــ  ـــــ

100 

100 

 ــ  ـــــ

 ــ  ـــــ

G g* ACGMVP D-GCE]16[ 

geval Ngeval SR geval Ngeval SR 

g1 

g2 

g3 

g4 

g6 

g8 

2 

2.124 

1.076574 

99.2396 

3.5578 

32217.4 

2.000 

2.1245 

1.0771 

99.2399 

3.6203 

32217 

202 

1250 

3141 

670 

28339 

2597 

100 

100 

100 

100 

84 

100 

2.0000 

2.124992 

1.076544 

Infeasible 

Infeasible 

32217 

3704 

1294 

12416 

 ــ  ـــــ

 ــ  ـــــ

609 

100 

100 

100 

 ــ  ـــــ

 ــ  ـــــ

100 

G g* ACGMVP EFA]15 [ 
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5. Adaptive Cellular Genetic Algorithm for Hard Clustering Problem 

In this section, methodological components are presented. 

5.1 Population Encoding 

A population of solutions is composed of μ different weight matrices wk of size n × q, 𝒌 =  𝟏, . . . , 𝝁. 

Each chromosome wk can be coded in two different formats as follows. 

̶ wk is encoded into a vector vk of size n × 1. The entry j in vk is set to be equal to the cluster 

number in which the pattern xj belongs. 

̶ wk is also encoded into another array Ak = (a1,k,….., aq,k), where aj,k is the center of the 

cluster Cj, j=1,...q, ie, a is computed using following equation: 

aj,k = 
∑𝒊=𝟏

𝒏 𝒘𝒊𝒋
𝒌 𝒙𝒋

∑𝒊=𝟏
𝒏 𝒘𝒊𝒋

𝒌  ,j = 1, ….., q.    (14) 

It should be noted that the cellular genetic operators use the above mentioned encoding systems for 

simplicity. The function evolution of our hard cluster problem is presented in equation (8) as a MVO 

problem. Thus, the ACGMV-HC algorithm used all the steps in the ACGMV algorithm with some 

differences in dealing with the two formulae of population. 

5.2 Computational Results 

The ACGMV-HC algorithm is programmed in MATLAB and applied to solve three datasets; 

̶ The first dataset of Bavarian postal zones includes 89 records with three attributes. 

̶ The second Bavarian postal zones dataset is comparable to the first but includes four 

additional attributes: the number of self-employed individuals, civil servants, clerks, and 

manual laborers. Furthermore, there are 89 instances. 

̶ The German towns database, which uses the Cartesian coordinates of 59 towns, has 59 

records with two properties. 

Table 9 presents the best-known global values. These values are given as nf(x*) where n is the number 

of instances and x* is the global minimum point. These values are donated as fopt and the solution 

found by the algorithm as f. The following formula is used to determine the error E reported for each 

algorithm: 

E = 
𝒇− 𝒇𝒐𝒑𝒕

𝒇𝒐𝒑𝒕
  × 100  (15) 

 

The results in Tables 10 and 11 show the comparison between our ACGMV-HC method with other 

methods, like the k-means algorithm (K-M), the simulated annealing (SA), a genetic algorithm (GA), 

the tabu search (TS), and an optimization-clustering algorithm (Algorithm1). The results of the 

compared methods are taken from [4]. TS, GA, and SA have been applied to equation (8), which is 

equivalent to a clustering problem's nonsmooth optimization formulation. Moreover, Algorithm1 has 

been applied to equation (10). 

geval Ngeval SR geval Ngeval SR 

g1 

g2 

g3 

g7 

g10 

g11 

2 

2.124 

1.076574 

-17 

-2.44 

3.2361 

2.000 

2.1245 

1.0771 

-16.999 

-2.4444 

3.2363 

202 

1250 

3141 

435 

156 

998 

100 

100 

100 

100 

100 

100 

2.0000 

2.7149 

1.0767 

-16.998 

-2.4380 

3.2361 

3409 

5253 

5178 

3243 

3501 

4405 

100 

80 

100 

100 

98 

100 
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The result for the first dataset of Bavarian postal zones is shown in Table 10. The result shows that 

the Algorithm1 method has the best result, whereas, the ACGMV-HC and GA methods have the same 

result. Table 11 presents the result for the second Bavarian postal zones dataset. The ACGMV-HC 

and algorithm methods have the same result. Table 12 presents the result for the German town's 

dataset, Based on the result, the ACGMV-HC method has the best result followed by TS and GA 

methods. 

5.3.1 Wilcoxon signed-ranks test 

A non-parametric technique called the Wilcoxon test is applied when testing a hypothesis using a 

two-sample design [17,18]. It is a comparative test that attempts to determine if there are significant 

differences in how two algorithms operate. 

 

           Table (10): Outcomes of the result for the first Bavarian postal zones dataset 

 

 

 

Table (11): Outcomes of the comparison between ACGMV-HC with other methods for first Bavarion postal 

zones dataset 

 

 

Table (12): Outcomes of the comparison between ACGMV-HC and other methods for second Bavarion postal 

zones 

The first Bavarian postal zone dataset 

Q 

fopt 

2 

0.60255e12 

3 

0.29451e12 

4 

0.10447e12 

5 

0.59762e11 

ACGMV-HC 0.00 23.48 0.00 0.00 

The second Bavarion postal zone dataset 

Q 

fopt 

2 

0.199080e11 

3 

0.17387e11 

4 

0.755908e10 

5 

0.540379e11 

ACGMV-HC 144.28 0.00 0.00 0.00 

The German towns dataset 

Q 

fopt 

2 

0.12142e6 

3 

0.77009e5 

4 

0.49601e5 

5 

0.3953e5 

ACGMV-HC 0.00 0.00 0.00 0.00 

Q 

fopt 

2 

0.60255e12 

3 

0.29451e12 

4 

0.10447e12 

5 

0.59762e11 

K-M 

TS 

GA 

SA 

Algorithm1 

ACGMV-HC 

7.75 

0.00 

0.00 

0.00 

0.00 

0.00 

23.48 

23.48 

23.48 

23.48 

0.00 

23.48 

166.88 

18.14 

0.00 

0.39 

0.00 

0.00 

335.32 

33.35 

0.00 

40.32 

0.00 

0.00 
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Table (13): Outcomes of the comparison between ACGMV-HC with other methods for German towns 

Q 

fopt 

2 

0.12142e6 

3 

0.77009e5 

4 

0.49601e5 

5 

0.3953e5 

K-M 

TS 

GA 

SA 

Algorithm1 

ACGMV-HC 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

1.45 

0.00 

0.00 

0.29 

0.29 

0.00 

0.55 

0.00 

0.00 

0.00 

0.00 

0.00 

2.75 

0.00 

0.00 

0.15 

0.15 

0.00 

 

For tests computations, Let di be the comparison of two algorithms' performance scores on the i-th 

position of the N results. The distinctions are arranged in order of their absolute values; in the event 

of a tie, average ranks are assigned. Suppose R+ is the sum of ranks for functions on which the first 

algorithm outperforms the second, and R– is the sum of ranks in opposite to R+. The ranks of di = 0 

are evenly split among the sums. If there is an odd number of them, one is ignored: The p-value 

associated with the comparison was determined using the Wilcoxon T statistic's normal T= min(R+, 

R–) is the smallest of the sums. (Table B.12 in [31]). The equal-means null hypothesis is rejected. 

approximation. (Section 6, Test 18 in [18]). 

Table 14 presents Wilcoxon test results between our ACGMV-HC method and other methods K-M, 

TS, GA, SA and Algorithm1. The result shows that the ACGMV-HC method is better than the TS and 

SA methods. 

 

   Table (14):  Wilcoxon test results 

Compared Methods  Solution Qualities 

Method 1 Method 2 R– R+ p-value Best Method 

C 

ACGMV-HC 

ACGMV-HC 

ACGMV-HC 

ACGMV-HC 

K-M 

TS 

GA 

SA 

Algorithm 1 

73.5 

48 

39.5 

68 

39 

4.5 

30 

36.5 

10 

39 

0.0013 

0.4944 

0.7449 

0.0234 

0.7760 

ACGMV-HC 

- 

- 

ACGMV-HC 

- 

                                

 

 

 

6. Conclusions and Future work 

Q 

fopt 

2 

0.199080e11 

3 

0.29451e12 

4 

0.10447e12 

5 

0.59762e11 

K-M 

TS 

GA 

SA 

Algorithm1 

ACGMV-HC 

144.25 

0.00 

144.25 

144.25 

144.25 

144.28 

106.79 

0.00 

0.00 

77.77 

0.00 

0.00 

303.67 

0.00 

0.00 

9.13 

0.00 

0.00 

446.13 

15.76 

15.76 

18.72 

0.00 

0.00 
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ACGAMVP method has been proposed to solve MVO problems. However, The ACGAMVP 

method's adaptive neighborhood construction process concentrates more emphasis on the 

most successful individual. The computational results for 9 unconstrained and 12 constrained 

benchmark test problems show the suggested method outperforms the other existing methods. 

The suggested method achieved a new global point. Further, ACGMV-HC is used to solve 

hard clustering problems as an MVO problem. Based on our simulation using three datasets, 

the suggested method is more efficient. In future work, We can use our proposed method to 

solve real problems as MVO problems such as scheduling problems. Also, ACGAMVP can be 

modified to deal with MVO with high dimensions and used to solve multi-objective 

functions. 
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