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Abstract— Nowadays, big data becomes widespread. Big 

data has great value, but it faces many challenges. One of 

these challenges is security. Many classic security techniques 

exist, but these mechanisms are not appropriate for big data 

security. To secure big data, it is necessary to secure many 

aspects such as infrastructure, data privacy, data 

management, and integrity and reactive. Securing 

computations in distributed programming frameworks and 

protecting non-relational data stores are two requirements 

for infrastructure protection. This survey will highlight 

securing MapReduce as one of the most popular distributed 

programming frameworks. Security of MapReduce 

computation is an important consideration when a 

MapReduce computation is performed on a public or 

hybrid cloud. When a MapReduce job is executed on 

public cloud or hybrid cloud, an integrity check of its result 

is required. In this survey, a set of previous techniques that 

check the result integrity of MapReduce will be explained. In 

addition to discussion of the advantages and disadvantages 

of each technique. 

Keywords—Big data, MapReduce, security, distributed 

computing. 

I. INTRODUCTION 

Big data is an expression that depicts the large 

structured and unstructured volume of data collected 

about our surroundings. Big data is a data set that is 

characterized by being big, high in variety, and 

velocity[1]. The advancement of information technology 

and social networks lead to the fast increase of data with 

the coming of the era of big data and cloud computing [2].  

Many economic and political interests are existed in big 

data, especially the process of data integration, analysis, 

and data mining [3]. However, big data faces many 

security risks and privacy-preserving challenges[4]. The 

traditional security mechanisms are not able to deal with 

big data security. This is because of the velocity, volume, 

and variety of big data. One of these challenges is secure 

computations in distributed programming frameworks 

(DPFs). MapReduce is a popular example for DPFs[5]. 

MapReduce presents parallel processing of large-scale 

data[6]. It is used to simplify distributed processing of 

large scale data in an efficient and fault-tolerant manner 

on a public cloud or hybrid cloud without any overprice 

(MapReduce is presented as platform-as-service by cloud)  

 

 

[7]. Without taking into consideration physical 

infrastructures and installation of software, there are more 

public clouds (e.g., Amazon Elastic MapReduce, Google 

App Engine) that enable users to complete MapReduce 

computations. MapReduce on both public cloud and 

hybrid cloud suffers from many attacks and security 

threats. The users can cost-effectively process big data 

using MapReduce on public clouds. But MapReduce on 

public cloud or hybrid cloud faces integrity vulnerability 

problem. If the public cloud is evaded because of security 

problems and running everything on private cloud, this 

will achieve result accuracy but with less economic 

benefit. On the public cloud, MapReduce jobs are 

executed by a cluster of hundreds or thousands of 

computation nodes. If an impersonation attack dominated 

any worker on this cluster, it will control this worker and 

make it tampers with computations. This worker becomes 

a malicious worker and may generate the wrong results 

and the total result of computation becomes incorrect. So 

it is necessary to check the result integrity of all workers 

whether mapper or reducer to satisfy the integrity of 

computations requirement and eliminate malicious 

adversary. In addition, more applications (e.g., Google, 

Yahoo!, Facebook, etc.) use MapReduce to process data, 

so the result integrity of MapReduce computation must be 

ensured. In this survey, a set of techniques that try to 

check the result integrity of MapReduce computation will 

be explained and their point of weakens will be clarified.  

The remaining of the survey is showed as follows. The 

model of MapReduce data processing is introduced in 

Section II. In Section III, a set of previous techniques that 

check the result integrity of MapReduce will be 

explained. In section IV, the problems of these techniques 

and the future work are showed. Finally, Section V 

concludes the survey. 

II. MAPREDUCE FRAMEWORK 

MapReduce presents parallel processing using computing 
nodes cluster over large-scale data as shown in Fig.1. 

Three entities are components of MapReduce [8]: 

distributed file system (DFS), a master, and workers. DFS 

where data are stored in the distributed file system in the 

form of a data block. The master presents job 

management, task scheduling, and load balancing among 
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workers. Workers are computation resources that perform 

tasks specified by the master. MapReduce contains two 

phases: 1) a map phase, in this phase; parallel processing 

is done by distributing input data to different distributed 

workers. 2) Reduce phase will be collected the 

intermediate results together. The master takes the job of 

MapReduce from users. This job's input text files will be 

put in DFS in the data blocks form. This job is partitioned 

into several map and reduce tasks. Map tasks number is 

determined by how many data blocks the input text files 
include. Only one data block will be taken by each map 

task as its input. In the map phase: when the master 

assigns map task to a worker, a worker becomes a 

mapper. When the map task assignment is sent by the 

master to the mapper, the data block is read by the mapper 

from DFS. Then mapper processes the data block and 

stores its intermediate result in its local storage. Each 

mapper generates an intermediate result that is 

partitioned into k partitions p1, p2,…, pk by partitioning 

function. Reduce tasks number is equal to partitions 

number k. In reduce phase, when the master assigns 
reduce task to a worker, a worker becomes a reducer. 

After a reduce task is received by the reducer, the master 

will send a notification when a map task is completed. 

After this notification, the reducer will read the 

intermediate result of each mapper that ends its map task. 

Then, the reducer processes its partition that is read from 

the intermediate result. Finally, each reducer result will be 

written to the DFS.           

                    

 

                                              

III. COMPUTATION INTEGRITY TECHNIQUES 

IN BIG DATA 

MapReduce's importance stems from its simple 

paradigm and parallel processing capability for data-
intensive computation in a variety of applications and 

research fields. Some researches interested in how to use 

MapReduce to fix problems in specific application 

domains. Other researches (that will be presented in this 

survey) are interested in computation integrity protection 

for MapReduce. To address computation integrity 

problems for MapReduce, some solutions are proposed 

such as replication sampling, and verification techniques.  

Some of these techniques achieve high result integrity but 

incur high-performance overhead and other techniques 

achieve low-performance overhead, but they are more 

vulnerable to attack as shown in Table.1. 

  

Technique name 
Result integrity Overhead 

low high low high 

secure MR √  √  

CCMR  √  √ 

Integrity MR  √  √ 

Accountable MapReduce  √  √ 

TrustMR √  √  

Result Verification 

Mechanism 

 

√ 

  

√ 

MtMR √   √ 

Credibility-Based Result 

Verification for MapReduce 
√   √ 

A. Secure MapReduce (secure MR) 

    Secure MR provides MapReduce service integrity and 

prevents replay and denial of service attacks [8]. It adds a 

set of security components for MapReduce as shown in 

Fig.2 to check the result integrity of map/reduce tasks.  

             

 

 

Communication between entities in secure MR with 

each other to achieve MapReduce security protection 

is organized into two protocols:- 

1. Commitment protocol  

In this protocol, instead of sending intermediate 

results directly (that is expensive) to the master to 

Figure.2 SecureMR Architecture Design [8] 
 

Table.1.overhead and result integrity of each technique 

Fig. 1. The mapreduce data processing reference model [8]. 
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check the integrity of this result, mappers will only 

send commitments to the master to detect opposition 

as shown in Fig.3.  

            

                                                     

              

2. Verification protocol 

 In the protocol of commitment, mappers probably 

send to the master right commitment but send the 

wrong result to reducers. This problem is solved by 

verification protocol through asking reducers to 

ensure that the result and its commitment are in 

agreement as shown in Fig.4.  

                                                   

    

This technique achieves service integrity of data 

processing with imposing low-performance overhead but 

it is not able to detect collusive malicious workers [8]. 

B. Cross Cloud MapReduce (CCMR) 

   CCMR merges the benefits of private cloud and public 

cloud [9]. It applies on MapReduce framework on a 

hybrid cloud that contains one private cloud (consist of 

master and verifiers) and one public cloud (consists of 

DFS and slave workers) as shown in Fig.5. It provides a 

scheme of checking result integrity on both the map phase 

and reduce phase. This technique has three types of tasks 

in both map and reduce phases (original task, replication 

task, verification task). In CCMR, a task will be executed 

on a worker that is randomly chosen from the public cloud 

(original task). Then, this task will be replicated on 

another worker that is also randomly taken from the 

public cloud (replication task). Master will compare 

between the original task and replication task to validate 

the result of the original task. Finally, this task will be 

executed on a private cloud to verify the result returned by 

the replication task and prevent collusive between two 

malicious workers that may execute both the original task 

and replication task on the public cloud.  This technique 

ensures high result integrity but it causes non-negligible 

performance overhead. 

 

 

C. Integrity MapReduce (Integrity MR) 

To satisfy the needs of integrity MR, will use CCMR 

(previous technique). Where integrity MR is the same 

architecture of CCMR but it contains one private 

cloud and multiple public clouds as shown in Fig. 6. 

The original task will be executed by a randomly 

chosen worker from one of public clouds and the 

replication task will be executed by another worker 

that will be randomly selected from another public 

cloud which is not the same public cloud that is used 

in the original task [10]. Finally, the verification task 

will be executed in the private cloud. The comparison 

between three tasks will be done such as CCMR. This 

technique achieves high integrity with a non-

negligible performance overhead. 

 

 

 

 

 

 

 
 

 

 

Fig. 3. The Commitment Protocol [8]. 

 

Figure .5.The architecture of CCMR [9]. 

 

 

 

 

 

 

 

 

 

Fig. 4. The Verification Protocol [8]. 
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D. Accountable MapReduce 

In accountable MapReduce, each machine is 

responsible for its behavior [11]. It will detect 

malicious workers through the master submits the 

input data and output of each mapper and reducer to 

the auditor group (trustworthy nodes) to check the 

validity of each worker as shown in Fig.7. In the 

auditor group, the group member will repeat the 

processing of the input data and compare its output 

with the original one for inconsistency check. To 

reduce overhead, accountable MapReduce allows the 

system to apply p-accountability that reduces the 

records that need to be checked. 

             

 

E.  Trust MapReduce (TrustMR) 

Both map and reduce tasks are divided into smaller 

computation pieces. To ensure the result integrity of each 
mapper, TrustMR depends on replicating the subset of 

pieces of computation two times [12]. Then the full 

original task and its replicated subsets will be sent to map 

verifiers that are located on reduce to validate the result of 

the mapper before submitting it to the reducer. In reduce 

phase, various reduce functions are produced for every 

different key by reduce tasks. Some of these reduce 

functions are (randomly) chosen and replicated in the 

replicated reduce tasks by TrustMR. The original and 

replicated reduce functions are verified in the verifier of 

the reducer. This technique succeeds in achieving a high 

detection rate with decreasing the replication overhead but 

the map verifier that checks result integrity of the 

intermediate result may be malicious and provide wrong 

input to the reducer.  

F. Result Verification Mechanism 

A new technique is proposed based on reputation-
threshold value using the method that is called voting 

[13]. In this technique, every task will be repeated and 

executed on various workers, and their outputs are 

gathered into sets based on outputs value. A worker's 

reputation is the total computing behavior of each worker. 

In the map phase, available mappers receive N mapper 

tasks (MT1, MT2… MTN) from the master to execute these 

tasks. After execution, mappers will send their outputs to 

reducers. For simplicity, only one task (MT1) will be 

repeated rp times. Various mappers Pi (1 ≤ i ≤ rp) will 

receive these replicas to execute them. The rp intermediate 
results that may have various values V(Pi) will be 

collected by the reducer. Then these results will be 

classified into k result groups Gj (1 ≤ j ≤ k) by the reducer. 

R(Pi) refers to the reputation of mappers Pi. Every result 

group reputation R(Gj) will be calculated as the 

reputations sum of all mappers that produce the same 

result value, noted V(Gj). The reputations sum of all rp 

mappers: 

𝑅(𝐺𝑗) =
∑ {𝑅(𝑃𝑖): 𝑉(𝑃𝑖) = 𝑉(𝐺𝑗)}𝑟𝑝

𝑖=1

∑ 𝑅(𝑃𝑖)𝑟𝑝
𝑖=1

 

When only one mapper task replica is sent, the reducer 

checks that the obtained result is true if the mapper 

reputation surpasses the minimum score of worker (R(P1) 

> WS), and agrees on it as a reduce task inputs. 

Otherwise, more replicas of the task will be requested and 

reputation-threshold-based voting will be applied. When a 

new result for a task replica is received by the reducer, 

this result will be added to the group of results that has the 

same result value. Every the reputation of result group is 

computed, and the group of results that has maximum 

reputation maxj(R(Gj)) will be picked as the best result 

group. If maxj(R(Gj))˃λ, the result group which performs 

this maximum is considered as the group, so this group 
result of mappers is agreed as right, and this result is taken 

by the reducer as input for its task. Finally, the reputation 

value of these mappers is updated as follows: 

𝑅(𝑃𝑖) =
𝑛(𝑃𝑖) + 1

𝑁(𝑃𝑖) + 2
 

Where N(Pi) refers to the total number of tasks processed 

and n(Pi) refers to the number of correct results produced 

by that mapper.  

In reduce phase, the same above method is applied, but 

the master is instead of the reducer in the map phase.   

Figure.6. Architecture of Integrity MR [10]. 

 

Figure.7. Accountability test [11]. 
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G. MapReduce Computation Integrity with Merkle Tree-

based Verifications (MtMR) 

MtMR applies on hybrid cloud that contains one 

private cloud (contains of master and verifiers) and one 

public cloud (contains of DFS and slave workers). MtMR 

contains the checker that is the private cloud and the 

prover that is the public cloud [14]. The checker wants to 

check if the result executed by the prover is right or not. 

The verification is executed in a commit-and-verify 

manner. It is divided into four steps. The job that is 

executed on the prover is divided to n parts. The result of 

the ith part is f(xi) Where f(xi) is the computation result of 

the input data xi. 

1. The commit step: 

 The prover forms a Merkle tree based on the result 

f(xi), where i ∈[1,n]. After the Ф value of the root node R 

is calculated, it is sent to the checker by the prover as 

commitment. Where the Merkle tree’s root node value Φ  

is returned by ᴧ(x1, x2…, xn) if the leaf nodes of Merkle 

tree are {x1, x2, …,xn}. 

𝛷(𝐿𝑖) = 𝑓(𝑥𝑖), 𝑖 ∈ [1, 𝑛] 

R)Φ()=n,…,x1x(ᴧ 

2. The challenge step:  

The checker then takes some values from all the f(x) 

values to verify (re-computing) those values. Taken 
values are referred as f(xj), where j є [1, m]. The checker 

requests from the prover the Φ values that belong to the 

complementary nodes for every taken value f(xj), so that 

the Merkle tree’s root value  Ф depended on each sample 

f(xj) and its corresponding complementary nodes is 

regenerated by the checker. 

3. The prove step: 

After the prover had received a request from the 

checker, it sends the complementary nodes of every 

sampled f(xj) value. Complementary nodes of every taken 

value f(xj)  is called as the proving path, referred as λj. 

4. The verify step:  

For each taken value f(xj) and its proving path λj , the 

checker will recompute the Ф value of the root node, 

referred as Ф(R'). Re-computation is carried out in a 

function ˄(f(xj), λj), which is a chain of hash functions on 

f(xj) and elements in {λj1, λj2… λjk}: 

)jk….,λ ),j1), λj) = hash(……hash(f(xj),λj(f(x˄ 

If the resulting Ф(R') is not the same Ф(R), the checker 

ensures that the taken nodes values  from the prover are 

incorrect. 

H. Credibility-Based Result Verification for MapReduce 

The credibility of nodes and results is the factor for 

result verification in this scheme [15]. The result that has 
a high credibility value is taken over the result that has  

relatively low credibility. Quiz jobs and Map-reduce jobs 

are types of jobs that from through deciding the credibility 

of a node. 

a. Quiz Jobs 

In this scheme, each quiz job consists of a random 

number of map-reduce jobs with recognized results. The 

client delivers these jobs at random intervals of time. 

After each job of the quiz is executed, the hash value of 

the results are calculated, then the client receives these 
hash results. The client updates the credibility of the 

nodes. 

 

b. Map-reduce Jobs 

After the task is assigned to workers, these workers 

will return the hash of the calculated results. Frequency, 

credibility, and threshold count are computed for each 

distinct result h. Result that has maximum frequency and 

maximum average credibility is the correct result. If 

multiple results with the maximum frequency and 

maximum credibility exist, then an additional parameter 
that is called threshold count will be chosen to determine 

the right results. 

IV. Discussion 

This survey presents some techniques that check result 

integrity of MapReduce computation to ensure result 

accuracy. Some of these techniques achieve high result 

integrity but incur high-performance overhead. In 

addition, others achieve low-performance overhead, but 

they are more vulnerable to attack. So in future work, the 

researchers must interest to reduce the performance 

overhead and achieve high result integrity for the 

techniques that check result integrity of MapReduce. 

V. CONCLUSION  

Big data has useful information, but it also brings many 

challenges. One of these challenges is security of big data. 

To secure big data, there are more of aspects that should 

be secured such as infrastructure security. To secure 

infrastructure, it is necessary to secure computations in 

distributed programming frameworks and non-relational 

data Stores. This survey highlights on securing a popular 

example of computations in distributed programming 

frameworks, which is MapReduce. To secure 

MapReduce, each node that participates in MapReduce 

computation will be checked to ensure result integrity of 

this node. This survey presents some techniques that 

check the result integrity of MapReduce computation to 

ensure the result accuracy.   
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