

International Conference on Computers and Information, ICCI 2021 stProceedings of 1

77

Survey of Computation Integrity Methods For Big Data
Doaa Abo aly, Hamdy Mousa, Walid Atwa

Dept. of Computer Science, Faculty of Computers and Information

Menoufia University, Egypt

Abstract— Nowadays, big data becomes widespread. Big

data has great value, but it faces many challenges. One of

these challenges is security. Many classic security techniques

exist, but these mechanisms are not appropriate for big data

security. To secure big data, it is necessary to secure many

aspects such as infrastructure, data privacy, data

management, and integrity and reactive. Securing

computations in distributed programming frameworks and

protecting non-relational data stores are two requirements

for infrastructure protection. This survey will highlight

securing MapReduce as one of the most popular distributed

programming frameworks. Security of MapReduce

computation is an important consideration when a

MapReduce computation is performed on a public or

hybrid cloud. When a MapReduce job is executed on

public cloud or hybrid cloud, an integrity check of its result

is required. In this survey, a set of previous techniques that

check the result integrity of MapReduce will be explained. In

addition to discussion of the advantages and disadvantages

of each technique.

Keywords—Big data, MapReduce, security, distributed

computing.

I. INTRODUCTION

Big data is an expression that depicts the large

structured and unstructured volume of data collected

about our surroundings. Big data is a data set that is

characterized by being big, high in variety, and

velocity[1]. The advancement of information technology

and social networks lead to the fast increase of data with

the coming of the era of big data and cloud computing [2].

Many economic and political interests are existed in big

data, especially the process of data integration, analysis,

and data mining [3]. However, big data faces many

security risks and privacy-preserving challenges[4]. The

traditional security mechanisms are not able to deal with

big data security. This is because of the velocity, volume,

and variety of big data. One of these challenges is secure

computations in distributed programming frameworks

(DPFs). MapReduce is a popular example for DPFs[5].

MapReduce presents parallel processing of large-scale

data[6]. It is used to simplify distributed processing of

large scale data in an efficient and fault-tolerant manner

on a public cloud or hybrid cloud without any overprice

(MapReduce is presented as platform-as-service by cloud)

[7]. Without taking into consideration physical

infrastructures and installation of software, there are more

public clouds (e.g., Amazon Elastic MapReduce, Google

App Engine) that enable users to complete MapReduce

computations. MapReduce on both public cloud and

hybrid cloud suffers from many attacks and security

threats. The users can cost-effectively process big data

using MapReduce on public clouds. But MapReduce on

public cloud or hybrid cloud faces integrity vulnerability

problem. If the public cloud is evaded because of security

problems and running everything on private cloud, this

will achieve result accuracy but with less economic

benefit. On the public cloud, MapReduce jobs are

executed by a cluster of hundreds or thousands of

computation nodes. If an impersonation attack dominated

any worker on this cluster, it will control this worker and

make it tampers with computations. This worker becomes

a malicious worker and may generate the wrong results

and the total result of computation becomes incorrect. So

it is necessary to check the result integrity of all workers

whether mapper or reducer to satisfy the integrity of

computations requirement and eliminate malicious

adversary. In addition, more applications (e.g., Google,

Yahoo!, Facebook, etc.) use MapReduce to process data,

so the result integrity of MapReduce computation must be

ensured. In this survey, a set of techniques that try to

check the result integrity of MapReduce computation will

be explained and their point of weakens will be clarified.

The remaining of the survey is showed as follows. The

model of MapReduce data processing is introduced in

Section II. In Section III, a set of previous techniques that

check the result integrity of MapReduce will be

explained. In section IV, the problems of these techniques

and the future work are showed. Finally, Section V

concludes the survey.

II. MAPREDUCE FRAMEWORK

MapReduce presents parallel processing using computing
nodes cluster over large-scale data as shown in Fig.1.

Three entities are components of MapReduce [8]:

distributed file system (DFS), a master, and workers. DFS

where data are stored in the distributed file system in the

form of a data block. The master presents job

management, task scheduling, and load balancing among

International Conference on Computers and Information, ICCI 2021 stProceedings of 1

78

workers. Workers are computation resources that perform

tasks specified by the master. MapReduce contains two

phases: 1) a map phase, in this phase; parallel processing

is done by distributing input data to different distributed

workers. 2) Reduce phase will be collected the

intermediate results together. The master takes the job of

MapReduce from users. This job's input text files will be

put in DFS in the data blocks form. This job is partitioned

into several map and reduce tasks. Map tasks number is

determined by how many data blocks the input text files
include. Only one data block will be taken by each map

task as its input. In the map phase: when the master

assigns map task to a worker, a worker becomes a

mapper. When the map task assignment is sent by the

master to the mapper, the data block is read by the mapper

from DFS. Then mapper processes the data block and

stores its intermediate result in its local storage. Each

mapper generates an intermediate result that is

partitioned into k partitions p1, p2,…, pk by partitioning

function. Reduce tasks number is equal to partitions

number k. In reduce phase, when the master assigns
reduce task to a worker, a worker becomes a reducer.

After a reduce task is received by the reducer, the master

will send a notification when a map task is completed.

After this notification, the reducer will read the

intermediate result of each mapper that ends its map task.

Then, the reducer processes its partition that is read from

the intermediate result. Finally, each reducer result will be

written to the DFS.

III. COMPUTATION INTEGRITY TECHNIQUES

IN BIG DATA

MapReduce's importance stems from its simple

paradigm and parallel processing capability for data-
intensive computation in a variety of applications and

research fields. Some researches interested in how to use

MapReduce to fix problems in specific application

domains. Other researches (that will be presented in this

survey) are interested in computation integrity protection

for MapReduce. To address computation integrity

problems for MapReduce, some solutions are proposed

such as replication sampling, and verification techniques.

Some of these techniques achieve high result integrity but

incur high-performance overhead and other techniques

achieve low-performance overhead, but they are more

vulnerable to attack as shown in Table.1.

Technique name
Result integrity Overhead

low high low high

secure MR √ √

CCMR √ √

Integrity MR √ √

Accountable MapReduce √ √

TrustMR √ √

Result Verification

Mechanism

√

√

MtMR √ √

Credibility-Based Result

Verification for MapReduce
√ √

A. Secure MapReduce (secure MR)

 Secure MR provides MapReduce service integrity and

prevents replay and denial of service attacks [8]. It adds a

set of security components for MapReduce as shown in

Fig.2 to check the result integrity of map/reduce tasks.

Communication between entities in secure MR with

each other to achieve MapReduce security protection

is organized into two protocols:-

1. Commitment protocol

In this protocol, instead of sending intermediate

results directly (that is expensive) to the master to

Figure.2 SecureMR Architecture Design [8]

Table.1.overhead and result integrity of each technique

Fig. 1. The mapreduce data processing reference model [8].

International Conference on Computers and Information, ICCI 2021 stProceedings of 1

79

check the integrity of this result, mappers will only

send commitments to the master to detect opposition

as shown in Fig.3.

2. Verification protocol

 In the protocol of commitment, mappers probably

send to the master right commitment but send the

wrong result to reducers. This problem is solved by

verification protocol through asking reducers to

ensure that the result and its commitment are in

agreement as shown in Fig.4.

This technique achieves service integrity of data

processing with imposing low-performance overhead but

it is not able to detect collusive malicious workers [8].

B. Cross Cloud MapReduce (CCMR)

 CCMR merges the benefits of private cloud and public

cloud [9]. It applies on MapReduce framework on a

hybrid cloud that contains one private cloud (consist of

master and verifiers) and one public cloud (consists of

DFS and slave workers) as shown in Fig.5. It provides a

scheme of checking result integrity on both the map phase

and reduce phase. This technique has three types of tasks

in both map and reduce phases (original task, replication

task, verification task). In CCMR, a task will be executed

on a worker that is randomly chosen from the public cloud

(original task). Then, this task will be replicated on

another worker that is also randomly taken from the

public cloud (replication task). Master will compare

between the original task and replication task to validate

the result of the original task. Finally, this task will be

executed on a private cloud to verify the result returned by

the replication task and prevent collusive between two

malicious workers that may execute both the original task

and replication task on the public cloud. This technique

ensures high result integrity but it causes non-negligible

performance overhead.

C. Integrity MapReduce (Integrity MR)

To satisfy the needs of integrity MR, will use CCMR

(previous technique). Where integrity MR is the same

architecture of CCMR but it contains one private

cloud and multiple public clouds as shown in Fig. 6.

The original task will be executed by a randomly

chosen worker from one of public clouds and the

replication task will be executed by another worker

that will be randomly selected from another public

cloud which is not the same public cloud that is used

in the original task [10]. Finally, the verification task

will be executed in the private cloud. The comparison

between three tasks will be done such as CCMR. This

technique achieves high integrity with a non-

negligible performance overhead.

Fig. 3. The Commitment Protocol [8].

Figure .5.The architecture of CCMR [9].

Fig. 4. The Verification Protocol [8].

International Conference on Computers and Information, ICCI 2021 stProceedings of 1

80

D. Accountable MapReduce

In accountable MapReduce, each machine is

responsible for its behavior [11]. It will detect

malicious workers through the master submits the

input data and output of each mapper and reducer to

the auditor group (trustworthy nodes) to check the

validity of each worker as shown in Fig.7. In the

auditor group, the group member will repeat the

processing of the input data and compare its output

with the original one for inconsistency check. To

reduce overhead, accountable MapReduce allows the

system to apply p-accountability that reduces the

records that need to be checked.

E. Trust MapReduce (TrustMR)

Both map and reduce tasks are divided into smaller

computation pieces. To ensure the result integrity of each
mapper, TrustMR depends on replicating the subset of

pieces of computation two times [12]. Then the full

original task and its replicated subsets will be sent to map

verifiers that are located on reduce to validate the result of

the mapper before submitting it to the reducer. In reduce

phase, various reduce functions are produced for every

different key by reduce tasks. Some of these reduce

functions are (randomly) chosen and replicated in the

replicated reduce tasks by TrustMR. The original and

replicated reduce functions are verified in the verifier of

the reducer. This technique succeeds in achieving a high

detection rate with decreasing the replication overhead but

the map verifier that checks result integrity of the

intermediate result may be malicious and provide wrong

input to the reducer.

F. Result Verification Mechanism

A new technique is proposed based on reputation-
threshold value using the method that is called voting

[13]. In this technique, every task will be repeated and

executed on various workers, and their outputs are

gathered into sets based on outputs value. A worker's

reputation is the total computing behavior of each worker.

In the map phase, available mappers receive N mapper

tasks (MT1, MT2… MTN) from the master to execute these

tasks. After execution, mappers will send their outputs to

reducers. For simplicity, only one task (MT1) will be

repeated rp times. Various mappers Pi (1 ≤ i ≤ rp) will

receive these replicas to execute them. The rp intermediate
results that may have various values V(Pi) will be

collected by the reducer. Then these results will be

classified into k result groups Gj (1 ≤ j ≤ k) by the reducer.

R(Pi) refers to the reputation of mappers Pi. Every result

group reputation R(Gj) will be calculated as the

reputations sum of all mappers that produce the same

result value, noted V(Gj). The reputations sum of all rp

mappers:

𝑅(𝐺𝑗) =
∑ {𝑅(𝑃𝑖): 𝑉(𝑃𝑖) = 𝑉(𝐺𝑗)}𝑟𝑝

𝑖=1

∑ 𝑅(𝑃𝑖)𝑟𝑝
𝑖=1

When only one mapper task replica is sent, the reducer

checks that the obtained result is true if the mapper

reputation surpasses the minimum score of worker (R(P1)

> WS), and agrees on it as a reduce task inputs.

Otherwise, more replicas of the task will be requested and

reputation-threshold-based voting will be applied. When a

new result for a task replica is received by the reducer,

this result will be added to the group of results that has the

same result value. Every the reputation of result group is

computed, and the group of results that has maximum

reputation maxj(R(Gj)) will be picked as the best result

group. If maxj(R(Gj))˃λ, the result group which performs

this maximum is considered as the group, so this group
result of mappers is agreed as right, and this result is taken

by the reducer as input for its task. Finally, the reputation

value of these mappers is updated as follows:

𝑅(𝑃𝑖) =
𝑛(𝑃𝑖) + 1

𝑁(𝑃𝑖) + 2

Where N(Pi) refers to the total number of tasks processed

and n(Pi) refers to the number of correct results produced

by that mapper.

In reduce phase, the same above method is applied, but

the master is instead of the reducer in the map phase.

Figure.6. Architecture of Integrity MR [10].

Figure.7. Accountability test [11].

International Conference on Computers and Information, ICCI 2021 stProceedings of 1

81

G. MapReduce Computation Integrity with Merkle Tree-

based Verifications (MtMR)

MtMR applies on hybrid cloud that contains one

private cloud (contains of master and verifiers) and one

public cloud (contains of DFS and slave workers). MtMR

contains the checker that is the private cloud and the

prover that is the public cloud [14]. The checker wants to

check if the result executed by the prover is right or not.

The verification is executed in a commit-and-verify

manner. It is divided into four steps. The job that is

executed on the prover is divided to n parts. The result of

the ith part is f(xi) Where f(xi) is the computation result of

the input data xi.

1. The commit step:

 The prover forms a Merkle tree based on the result

f(xi), where i ∈[1,n]. After the Ф value of the root node R

is calculated, it is sent to the checker by the prover as

commitment. Where the Merkle tree’s root node value Φ

is returned by ᴧ(x1, x2…, xn) if the leaf nodes of Merkle

tree are {x1, x2, …,xn}.

𝛷(𝐿𝑖) = 𝑓(𝑥𝑖), 𝑖 ∈ [1, 𝑛]

R)Φ()=n,…,x1x(ᴧ

2. The challenge step:

The checker then takes some values from all the f(x)

values to verify (re-computing) those values. Taken
values are referred as f(xj), where j є [1, m]. The checker

requests from the prover the Φ values that belong to the

complementary nodes for every taken value f(xj), so that

the Merkle tree’s root value Ф depended on each sample

f(xj) and its corresponding complementary nodes is

regenerated by the checker.

3. The prove step:

After the prover had received a request from the

checker, it sends the complementary nodes of every

sampled f(xj) value. Complementary nodes of every taken

value f(xj) is called as the proving path, referred as λj.

4. The verify step:

For each taken value f(xj) and its proving path λj , the

checker will recompute the Ф value of the root node,

referred as Ф(R'). Re-computation is carried out in a

function ˄(f(xj), λj), which is a chain of hash functions on

f(xj) and elements in {λj1, λj2… λjk}:

)jk….,λ),j1), λj) = hash(……hash(f(xj),λj(f(x˄

If the resulting Ф(R') is not the same Ф(R), the checker

ensures that the taken nodes values from the prover are

incorrect.

H. Credibility-Based Result Verification for MapReduce

The credibility of nodes and results is the factor for

result verification in this scheme [15]. The result that has
a high credibility value is taken over the result that has

relatively low credibility. Quiz jobs and Map-reduce jobs

are types of jobs that from through deciding the credibility

of a node.

a. Quiz Jobs

In this scheme, each quiz job consists of a random

number of map-reduce jobs with recognized results. The

client delivers these jobs at random intervals of time.

After each job of the quiz is executed, the hash value of

the results are calculated, then the client receives these
hash results. The client updates the credibility of the

nodes.

b. Map-reduce Jobs

After the task is assigned to workers, these workers

will return the hash of the calculated results. Frequency,

credibility, and threshold count are computed for each

distinct result h. Result that has maximum frequency and

maximum average credibility is the correct result. If

multiple results with the maximum frequency and

maximum credibility exist, then an additional parameter
that is called threshold count will be chosen to determine

the right results.

IV. Discussion

This survey presents some techniques that check result

integrity of MapReduce computation to ensure result

accuracy. Some of these techniques achieve high result

integrity but incur high-performance overhead. In

addition, others achieve low-performance overhead, but

they are more vulnerable to attack. So in future work, the

researchers must interest to reduce the performance

overhead and achieve high result integrity for the

techniques that check result integrity of MapReduce.

V. CONCLUSION

Big data has useful information, but it also brings many

challenges. One of these challenges is security of big data.

To secure big data, there are more of aspects that should

be secured such as infrastructure security. To secure

infrastructure, it is necessary to secure computations in

distributed programming frameworks and non-relational

data Stores. This survey highlights on securing a popular

example of computations in distributed programming

frameworks, which is MapReduce. To secure

MapReduce, each node that participates in MapReduce

computation will be checked to ensure result integrity of

this node. This survey presents some techniques that

check the result integrity of MapReduce computation to

ensure the result accuracy.

International Conference on Computers and Information, ICCI 2021 stProceedings of 1

82

References

[1] J. Wang, Y. Yang, T. Wang and J. Zhang, "Big Data

Service Architecture: A Survey," Journal of Internet

Technology, vol. 21, no. 1, pp. 393-405, 2020.

 [2] G. M. Vaidya and M. M. Kshirsagar, "A Survey of Algorithms,

Technologies and Issues in Big Data Analytics and Applications," in 4th

International Conference on Intelligent, 2020.

 [3] W. Fang, X. Z. Wen, Y. Zheng and M. Zhou, "A survey of big data

security and privacy preserving," IETE Technical Review, vol. 34, no. 3,

pp. 544-560, 2016.

 [4]" Cloud Security Alliance. Expanded top ten big data security and

privacy challenges,"

[Online]https://downloads.cloudsecurityalliance.org/initiatives/bdwg/,

2013.

[5] D. N, S. B and V. S, "Big data Hadoop MapReduce job scheduling:

A short survey.," Information Systems Design and Intelligent

Applications, no. 5, pp. 349-365, 2019.

[6] S. N, "Integrated Security and Privacy Framework for Big Data in

Hadoop MapReduce Framework," Turkish Journal of Computer and

Mathematics Education (TURCOMAT), vol. 12, no. 6, pp. 646-662,

2021.

[7] J. Dean and S. Ghemawat, "MapReduce: simplified data processing

on large clusters," in the 6th Conference on Symposium on Operating

Systems Design & Implementation, 2004.

[8] W. Wei, J. Du, T. Yu and X. Gu, "Securemr: A service integrity

assurance framework for mapreduce," in Annual Computer Security

Applications Conference, 2009.

[9] Y. Wang, J. Wei and M. Srivatsa, "Result integrity check for

mapreduce computation on hybrid clouds," in Sixth International

Conference on Cloud Computing, 2013.

[10]Y. Wang, J. Wei, M. Srivatsa, Y. Duan and W. Du, "IntegrityMR:

Integrity assurance framework for big data analytics and management

applications," in International Conference on Big Data, 2013.

[11] Z. Xiao and Y. Xiao, "Achieving accountable MapReduce in cloud

computing," Future Generation Computer Systems, vol. 30, pp. 1-13,

2014.

[12] H. Ulusoy, M. Kantarcioglu and E. Pattuk, "TrustMR: Computation

integrity assurance system for MapReduce," in International Conference

on Big Data (Big Data), 2015.

[13] A. Bendahmane, H. Bennasar and M. Essaaidi, "An efficient

approach to improve security for mapreduce computation in cloud

system," in the International Conference on Learning and Optimization

Algorithms: Theory and Applications, 2018.

[14] Y. Wang, Y. Shen and H. Wang, "Mtmr: Ensuring mapreduce

computation integrity with merkle tree-based verifications," IEEE

Transactions on Big Data, vol. 4, pp. 418-431, 2016.

 [15] T. A. Samuel and A. N. M, "Credibility-based result verification

for Map-reduce," in Annual IEEE India Conference (INDICON), 2014..

