
International Conference on Computers and Information, ICCI 2021 stProceedings of 1

115

Enhanced User Authentication Based on Dynamic

Port Knocking Technique

Alaa Kamel Zidan

Information Technology Dep.

Menoufia University - Computers and

Information Faculty,

Egypt.

alaa.k.zidan@gmail.com

Khaled Amin

Information Technology Dep.

Menoufia University - Computers and

Information Faculty,

Egypt.

kh.amin.0.0@gmail.com

Tamer Fathy Ghanem

Information Technology Dep.

Menoufia University - Computers and

Information Faculty,

Egypt.

tamer.ghanem@ci.menofia.edu.eg

Abstract—Port knocking is a passive authentication
mechanism which aims to control firewall response using a
sequence of connection attempts to its closed ports. Dynamic
port knocking which varies in each session, faces many
challenges which are knocking sequence synchronization
between client and server, handling high load of normal
requests, out of order knocks, lost knocks, knocking through
NAT, and knocking attacks. In this paper, a proposed dynamic
port knocking approach is provided. The proposed approach,
with the help of intermediate IPS, enables client and target
server to generate a unique dynamic knocking sequence based
on a secured random seed. This process is executed only at first
communication session. Next, client begins to authenticate
himself by knocking the target service with different ports and
different number of knocks each time a session is initiated.
Client-Server knocking synchronization, lost knocks, and out
of order knocks are considered for issuing a correct knocking.
The proposed approach provides immunity against several
network attacks such as DoS attack, replay attack, and brute
forcing attack. Extensive simulation shows that the proposed
work overcome other compared approaches in terms of
response time, memory utilization, CPU utilization, and the
number of provided features.

Keywords: Security, port knocking, port scanning,

authentication.

I. INTRODUCTION

Network attacks attempt to disrupt network normal
operations by malfunctioning network devices and services.
Gathering information techniques, like port scanning, is
considered the first step in attack preparation. Port scanning
is a well-known method that enables the attacker to identify
the services running behind opened ports. So, there is a need
to enable clients to connect services by targeting closed ports
using a technique called port knocking.

Port knocking is an authentication technique which
allows a specific system service to be available based on a
received sequence of packets to target device ports in
specific pattern. The target device does not respond until a
correct sequence is received and hence, the service will be
available to the requester. This mechanism is known as
security through obscurity. Port knocking is used side by
side with other authentication techniques as an additional
layer of security.

Basic (static) port knocking [1] depends on sending fixed
number of packet sequence (single port knock or multiple
port knocks) to the same closed ports which is easy to

implement. Basic knocking is not secure enough as it is
susceptible to sniffing. On the other hand, dynamic port
knocking is more secure than basic knocking as it is robust
against brute force and sniffing attacks, but it is more
complicated. Dynamic knocking sends a variable number of
knocks with different port numbers each time a new session
is initiated. Dynamic port knocking issues, like client/server
knocking sequence synchronization, knock loss, out of order
knocks reception, and resources consumption, are examples
of challenges that face this type of knocking.

Firewall is main part of port knocking system as it
enables client to pass through to target service if correct
knocking sequence is received, otherwise, no response.
Firewall controls passed traffic by configuring suitable rules
for particular user based on the correctness of the knocking
sequence. Intrusion Prevention System (IPS) may be used as
a helper part to detect and prevent attack.

Synchronization between client and server on the current
selected knocks is a must in dynamic port knocking. Out of
order and lost knocks due to network congestion or buffer
overflow affects the knocking process as the client and
server must choose the same knocks from the sequence to
enable client session to be accepted by the target service.

Dynamic port knocking algorithms serve security at the
expense of processing overhead compared to static port
knocking. Server should keep tracking of the generated
knocking sequence of each client and his current knocking
position in the sequence. This may affect the consumed
resources and hence the ability to serve more clients.

Network attacks are another challenge in port knocking.
Denial of service (DoS), replay attack, and brute force
attacks are examples of these attacks. So, knocking systems
should be immune to such attacks by making the service
available to legitimate clients and detect/reject attacking
requests.

In this paper, a proposed dynamic port knocking is
presented. The knocking process is divided into three phases.
The first and second phase, with the help of intermediate
IPS, provide client identification and agreement between
client and target service on knocking sequence generation in
a secure way. These two phases are executed only once at
the first client-server communication. Sequence generation
process is selected to be simple and immune to attacks. In
the third phase, user knocks the target server with selected

mailto:tamer.ghanem@ci.menofia.edu.eg

International Conference on Computers and Information, ICCI 2021 stProceedings of 1

116

knocks from the sequence to initiate authentication at the
start of the communication session. Each initiated session
has its own knocks count and knocking ports. Statistics
collected by the server is fed back to IPS for client behavior
evaluation. This cooperation between IPS and server enable
the whole system to be robust against malicious behavior.

This paper is organized as follows: In section (Ⅱ), related
work is introduced. In section (Ⅲ), the proposed approach is
presented. Section (Ⅳ) presents results evaluation and
analysis, Section (Ⅴ) presents conclusion and future work.

II. Related work:

Port knocking is one of passive authentication techniques
which server doesn’t have any previous information about
valid users. Server depends on validating knocks whoever
user identification is. Port knocking validation depends on
packet structure and the anonymity of target service. Port
knocking processing may be accomplished by target server,
or external authentication service.

In [2], a port knocking technique is presented which
depends on cheating port scanners using trap server
(honeypot) and fake opened ports (honeyport), while real
server identity is presented as non-important peripheral.
Legitimate users connect to provided services through a
filtering/authentication service using a single encrypted
sniffer packet that includes information about client and
target service. This technique has many issues that should be
considered. Filtering service is not immune against denial of
service attack (DoS). User authentication at each initiated
connection is another issue that increases the total system
processing overhead.

Another port knocking approach is presented In [3]. This
approach is based on distributing identification token (IDT)
to clients with the help of domain DNS service. Before
connecting target service, client connects to the DNS service
to resolve the domain name and receives a DNS response
that includes the IDT which is valid for 120 seconds. IDT is
used by the client as a preshared key for calculating a single
port knock included in the sent authentication packet to the
target service. This approach is immune to information
gathering related to IP-based network scanning as no
response from target server is received until valid
authentication is held. This approach is subject to man in
middle attack as an attacker can replay a legitimate user
authentication packet within the DNS expiration period to
have access to the target service.

A hybrid port knocking approach is introduced In [4].
Both OAuth authentication technique and port knocking are
used for gaining access to mobile web services.
Steganography is used to hide the sent multiple port knocks
information inside a segmented image to the target server.
Firewall along with authentication server are used to validate
the received requests. Symmetric and asymmetric encryption
are available for requested connections which enable the
system to be immune against replay attack. DoS attack is
also considered as a threshold to limit the number of

received packets from each client within a defined time
window. Used images are limited to five images which make
the system vulnerable to man in middle attack. CPU
overhead is another issue due to the use of image processing
which affects system response time and maximum number
of concurrent users.

Another research work is presented in [5]. AES is used to
encrypt knock packet between client and target server.
Information like target service port number, X509 certificate,
timestamp, and client IP are included in a single knock
packet over UDP connection. Diffie Helman algorithm is
used to distribute keys between clients and the target server.
DoS attack is not considered in this research.

Despite of its higher level of security compared to fixed
packet knocking, dynamic port knocking is challenging due
to packet loss and out of order reception. Alternatively, fixed
packet knocking techniques may integrate with external
authentication services for the sake of enhancing security
level which results in more processing overhead and
increasing in response time. In this work, a dynamic port
knocking is proposed. The knocking process, with the help
of external IPS, securely provide client identification and
knocking sequence generation only once at the first client-
server communication on a service basis. Sequence
generation process is selected to be simple and immune to
attacks. As a result, processing overhead and response time
are minimized in next communication sessions. At each
communication session initialization, user knocks the target
server with selected knocks from the sequence which varies
in count and port numbers based on predefined rules to
initiate authentication. Client-server knocks selection
synchronization, knock loss, and out of order knocks are
considered. Statistics collected by the server is fed back to
IPS to evaluate client behavior. This cooperation between
IPS and target service enables the whole system to be robust
against many network attacks like DoS, replay attack and
brute force attack.

III. PROPOSED WORK:

In this research, a proposed dynamic port knocking

technique is presented. It is based on generating knocking

sequence to be used between one client and one target

service. Each generated knocking sequence includes several

knocking blocks. Each knocking block has a variable

number of knocks with different port numbers. The proposed

work takes care of knocking synchronization between client

and server against lost and out of order knock packets.

Immunity against attacks, like brute force, DoS, and replay

attacks are considered.

The proposed technique assumes that a separated IPS

device and basic target server firewall are available. IPS is

used to handle early service requests from clients and to be

notified about some malicious knocking characteristics.

Basic firewall, which included in the operating system of the

target server, is configured to accept knocks without

response until a correct knocking block is received, then the

International Conference on Computers and Information, ICCI 2021 stProceedings of 1

117

target service will be available to the client. Target service

name and a corresponding service seed are assumed to be

known for valid users which restricts the number of accepted

requests to initialize a new knocking sequence.

The proposed work consists mainly from three phases as

shown in Fig 1. Client connection goes through these phases

to authenticate itself at the target service. These phases are as

follows:

Phase 1: Secured communication initialization between

client and IPS is accomplished. IPS validates the request

and generates a client ID to be used through the next

phases. Knocking sequence generation process is initiated

at client side upon receiving that ID.

Phase 2: IPS informs securely the requested target server,

which holds the target service, about the expected client

connection. The target service initiates the same process

as the client to generate the same knocking sequence.

Phase 3: Dynamic knocking session is initiated by the

client to authenticate itself at target service. If successful

knocking, client is allowed to use the target service,

otherwise, client receives no response and IPS is

informed. In addition, synchronization between client and

service, due to lost and out of order of sent UDP knock

packets, is considered in this phase.

First and second phases are invoked only at first client

interaction with the target service, or when client reaches the

end of a previously generated knocking sequence. Knocking

sequence could be used for several future sessions between

client and target service directly (phase 3) which decreases

the overall system overhead.

In this work, IPS and target service are cooperated to

protect the system from several types of attacks like DoS,

brute force, and replay attacks. IPS internal intrusion model

and information exchanged about malicious knocking

behavior with the target service improves system protection

against these attacks.

In the following sub sections, a detailed description of

each communication phase is presented.

Phase 1: Communication initialization

In this phase, client and IPS are agreed on a shared key to

secure the communication. IPS replies with client ID as well

upon successful connection. This ID is concatenated with

seed for generating knocking sequence for future usage. This

process includes the following steps:

Fig 1. Proposed Knocking Phases.

Step 1: User sends a packet to IPS to request

communication initialization.

Step 2: Client and IPS starts to agree on a shared secret

key to secure the future communication using Diffie-

Helman algorithm.

Step 3: The requested target service name is mapped to

target server IP and service port. Service name, which is

known only to legitimate users, is sent to IPS encrypted

with AES algorithm using the early generated shared

secret key.

Step 4: Upon receiving correct target service name, IPS

generates a unique client ID and sends it back to the

client. If a wrong target service is received, IPS rejects the

connection.

Step 5: If previous steps are done successfully, client

starts to generate a knocking sequence based on the

received ID. The generation process will be stated later.

Phase 2: Notifying target service

In this phase, A secure connection is established between

IPS and target server to inform the server about the expected

connection. This includes the following steps:

Step 1: A secure connection is established using AES

between IPS and target server with the help of Diffie-

Helman algorithm.

Knocking Sequence
Generation

Knocking Sequence
Generation

Verification

P
ha
se
1

Ph
ase
2

P
ha
se
3

Client
1

IPS Server
Target
Server 1

User sent packet request

Diffie-Helman key exchange

Service name (encrypted by AES)

Client ID (encrypted by AES)

Diffie-Helman key exchange

Service, client ID and IP
(encrypted by AES)

Send knocking Packets contains client ID

Port connection

International Conference on Computers and Information, ICCI 2021 stProceedings of 1

118

Step 2: All information (Client IP and target service port)

related to client request plus the generated client ID are

passed to the target server.

Step 3: A sequence generation process is initiated at

server side which is the same process as at client side. At

this point, target service is ready to accept knocks from

the requesting client.

Knocking sequence generation algorithm

In this section, knocking sequence generation process is

described. The basic idea depends on using client ID and

additional seed string as a base for sequence generation. This

additional seed is known only to legitimate users and target

service. Service name may be used as a seed for simplicity as

it is already known to both legitimate users and target

service. After generating the sequence, it is divided into

knocking blocks which include a variable number of knocks

with different knock ports for each block. The generation

process steps are as follows:

Step 1: Hashing the concatenated client ID and the chosen

seed using SHA-512. The output contains Ascii characters

in range of [0 – 9] and [a-f].

Step 2: Substitute characters in range [a – f] with the

corresponding values in range [10 – 15] to obtain the

knocking sequence string of numeric Ascii characters

only.

Step 3: Obtaining future connection sessions knocking

blocks by dividing knocking sequence into several

knocking blocks as follows:

Step 3-1: Let Nmin, and Nmax are the selected minimum

and maximum number of knocks in each knocking block.

Let R is actual number of knocks in knocking block. Let

Pmax = 65535 which is the maximum number of UDP

ports. Let D represents one digit in the knocking

sequence string and digit remainder Dr = D mod Nmax.

Step 3-2: To specify next knocking block with R knocks,

Traverse the generated string digits from left to right.

Select R equals to Dr if (Dr>=Nmin), else ignore and

move to the next digit until a match exists.

Step 3-3: Select the next R x 5 string digits to represent R

knocking port numbers in the next knocking block

considering each port number (P) consists of 5 digits

string (Ps) and actual port number P = Ps mod Pmax.

Step 4: Repeat step 3-2, and step 3-3 to get the next

knocking blocks in the sequence.

The following example in (Table 1) clarifies how
knocking sequence generation process works. Client ID is
generated using UUID method as “a10050b8-38e0-478c-
a1a4-932c70cdb32f”. Used seed which should be target

service name is chosen to be “this is the seed” in this
example. Nmin and Nmax is selected to be 2, 5 respectively.

TABLE 1. EXAMPLE OF KNOCKING BLOCKS GENERATION PROCESSES

Concatenation
a10050b8-38e0-478c-a1a4-932c70cdb32fthis is
the seed

Step 1: SHA-512 952EC88A8ACC56ABD0792FA5C614C01CAD5E
4AD953978B87B6D435B7460F922EF25681CE62
3A7878BE245F1552F048A40C1D284A018823E32
EBCE9EA2C254783

Step 2:
Substitution of

[a – f] by [10 – 15]

952141288108101212561011130792151051261412
011210135144101395397811871161343511746015
922141525681121462310787811142451515521504
810401211328410018823143214111214914102122
54783

Step 3- 2, 3-3:
Knocking blocks.

Blue Digits: Used
to get number of
knocks R = D mod
Nmax.

Red Digits:
Ignored as each
digit mod Nmax <
Nmin

9 52141 28810 81012 12561 (9 mod 5 = 4
knocks)

0111 (Ignored as each digit mod Nmax < Nmin)

3 07921 51051 26141

2 01121 01351

4 41013 95397 81187 11613

4 35117 46015 92214 15256

8 11214 62310 78781

11

4 24515 15521 50481 04012

11

3 28410 01882 31432

1

4 11121 49141 02122 54783

Step 3-4: Actual
UDP knocking
ports in each block
by applying P = Ps
mod Pmax

Knock block1 ports: 52141, 28810, 15477, 12561

Knock block2 ports: 7921, 51051, 26141

Knock block3 ports: 1121, 1351

Knock block4 ports: 41013, 29862, 15652, 11613

Knock block5 ports: 35117, 46015, 26679, 15256

Knock block6 ports: 11214, 62310, 13246

Knock block7 ports: 24515, 15521, 50481, 4012

Knock block8 ports: 28410, 1882, 31432

Knock block9 ports: 11121, 49141, 2122, 54783

Phase 3: Knocking and authentication

In this phase, client tries to authenticate himself to the

target service using the previously generated knocking

sequence (Fig 2). A successful knocking attempt includes

the following steps:

Step 1: Client selects the next knocking block in the

generated sequence and starts to send UDP knocks to the

International Conference on Computers and Information, ICCI 2021 stProceedings of 1

119

target service. Each knock packet includes knock port as

destination port, client ID, and packet order inside

knocking block.

Step 2: Upon receiving knocks at target server and based

on the information received previously from the IPS

about the expected connection, target server checks

source address and client ID in each knock without

giving any response to the client. If the received knocks

match the current knocking block of this client at server

side, the target service will be available to the client. If

not, the connection is blocked by target server firewall

and IPS will be informed.

Step 3: Upon successful knocking, current knocking

block is marked at both sides as the last used knocking

block in the sequence.

Fig 2. Phase 3 knocking validation at target server.

Knocking challenges

Several issues are raised when applying the proposed
knocking approach. Next chosen knocking block
synchronization between client and target service, testing
server connectivity, and knocking attacks are challenges

that need to be considered. These challenges are handled as
described below.

i. Knocking synchronization

Due to receiving out of order knocks and lost knocks

which results in out of sync for current chosen knocking

block at both client and target service, synchronization is a

must to enable correct knocking behavior.

Out of order issue is handled by adding knock order

number inside the sent knock. Receiver has the ability to

reorder knocks based on this number. Sniffing the knocks

order is not useful to attackers as the knocking blocks are

changed dynamically.

Lost knocks are detected by the target service based on
time out threshold. If loss is detected, server will ignore the
current knocking block and move to the next one with no
reply to the client (Fig 3).

Fig 3. Client and server knocking synchronization process.

Lost knocks causes out of sync in current chosen
knocking block between client and target service. This issue
is handled at server side by using a matching window. If

No

No Does client
position exceed
server position?

Yes

Server updates
position to match

client position

Client updates its
knocking position

based on server sent
knocking position

Phase 3

Inform IPS
about client

activity

Is matching
exist?

Match received Knocking
block with knocking

window.

Synchronization Process

Open service
to client

Yes

No

END

END

Is knocking packets
match current

knocking block?

Open service
to client

Yes

No

Synchronization Process

Is end of knocking
sequence at client

or server?

Phase 1

No

Yes

Read current indicated
knocking block

Inform IPS server
about client activity

No Yes

Target server receives client knock packet

Is valid client ID
according to
stored data?

Phase 3

International Conference on Computers and Information, ICCI 2021 stProceedings of 1

120

received knocking block is not matching the current
knocking block, server tries to match it with a window of
knocking blocks with the current knocking block in the
middle of it. If no match, no response is provided and IPS is
informed. If matching occurs at future part of the window,
server will update its current position to be the same as
client, otherwise client is informed to move its position to
match server current position in the sequence. This process
is shown in Fig 3.

ii. Testing target server connectivity

In port knocking, server presents no reply to incorrect

knocking attempts. Client may need to test if the server is

reachable without wasting knocking blocks in the sequence

as each block is only used once and knock loss may occur.

As mentioned earlier, in case of out of sync between client

and server, successful matching with old part of server

window results in server response with current knocking

position in the sequence. Client may test connectivity by

sending old knocking blocks within server window limits

and capture response if exists. If no response, client tries

server connectivity after a bit longer time. As reply only

includes current server knocking position, there is no risk as

knocking sequence is not known to attackers.

Knocking attacks

 In this work, IPS and target service are cooperated to

protect the system from several types of attacks. IPS internal

intrusion model and information exchanged about malicious

knocking behavior with the target service improves system

protection against these attacks. Our proposed work can

defense against the following attacks:

Replay attack: This type of attack repeats previously

transmitted data between client and server to gain some

benefits. Basic port knocking is exposed to replay attack by

resending static knocking packets to server. The proposed

approach depends on dynamic port knocking where number

of knocks and knocking ports are changed with each

connection session. So repeated knocking blocks will be

ignored by the server.

Brute forcing attack: As each client generates its own

knocking sequence based on the securely obtained client ID

from IPS server, guessing the knocking sequence or correct

knocking block is a challenging process to the attacker. IPS

will block client immediately upon being informed by target

service that an incorrect knocking block is received. This

means that the attacker has only one chance to guess

knocking. Knocking permutations and guessing probability

are calculated as below.

Let

Nmin,Nmax: Minimum and maximum number of packets in

each knock block. Chosen here to be 2, 5 respectively.

n: Available port choices which are 65535 port number.

Available knocking permutations are computed as:

 nP Nmax, Nmin =
𝑛!

(𝑛−𝑁𝑚𝑎𝑥)!
−

𝑛!

(𝑛−𝑁𝑚𝑖𝑛−1)!
=

65535!

(65535−5)!
−

65535!

(65535−1)!
= 1,208,649,142,377,930,202,087,305

Guessing probability is calculated as:

𝑃𝑏(𝑛, 𝑁𝑚𝑎𝑥, 𝑁𝑚𝑖𝑛) =
1

𝑛𝑷𝑁𝑚𝑎𝑥,𝑁𝑚𝑖𝑛
 = 8.274e-25

Other types of attacks: As IPS server monitors traffic
between client and target service, IPS can detect several
types of attacks at different situations based on its internal
detection model and received information from target server.
Examples of these detection situations are as follows:

Connection initiation request: IPS server receives user

connection request at the beginning of communication. If

pervious malicious behavior of this user exists or request

has invalid information like wrong service name, IPS

server blocks the connection.

Incorrect knocking: If received knocking doesn’t match

any knocking block within server knocking window,

server will inform IPS with user’s information to block

future user requests.

DoS attacks: Based on internal IPS model and collected

statistics from target server about wrong knocking,

flooding attacks, like DoS attack, can be detected and

blocked. These statistics include how many wrong

knocking trials is received within a time window. IPS use

the received statistics to detect DoS attacks based on a

preconfigured threshold. Hence, the cooperation between

target server and IPS enable to handle such attacks.

IV. RESULTS AND ANALYSIS:

In this section, the performance of the proposed dynamic

port knocking is evaluated using two different connection

scenarios. This performance is evaluated in terms of server

average processor utilization, server average memory

utilization, and average knocking response time for each

knocking block. Knocking block response time measures the

interval between receiving first knock and sending

successful knocking response at server side. Helper tools,

like Top-like utility, PCP (Performance Co-pilot), and

Tcpdump, are used for measuring performance metrics.

These measurements are collected and analyzed using

implemented bash script.

Experiments are executed on physical machine with Intel

i7-5500U @ 2.40GHz processor and 8 GB memory. Three

Linux virtual machines are built using VMWare 12

hypervisor on top of the physical machine. First virtual

machine is the client machine (1 virtual processing core, 3

GB memory) which generates connection requests according

to the applied scenario. Second machine (1 virtual

processing core, 2 GB memory) plays the role of IPS server

using Suricata engine and implemented python scripts. The

third machine is the target server (4 virtual processing core, 2

GB memory) which receives and validates knocking blocks.

International Conference on Computers and Information, ICCI 2021 stProceedings of 1

121

Scenario 1:

In this scenario, incremental number of users, from

10000 to 100000 users with step of 10000 users for each run,

is conducted to generate a bulk of knocking requests to target

server in minimum possible time interval for estimating

workload impact on knocking server utilization. Users are

generated using python code with multithreading. Each user

is considered to send only one knocking block from its

generated knocking sequence. Number of knocks in each

knocking block is set to be within [1 to 4] range. Number of

users at each run along with their corresponding total

number of sent packets are stated in Table 2.

TABLE 2.FIRST SCENARIO: SENT PACKETS OVER EACH GROUP OF USERS.

Users 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

Packets 29,337 57,950 88,110 117,152 143,576 173,077 202,530 231,571 261,392 290,045

Phase

1,2 Avg

Time

per user

(ms)

11.3 11.3 11.6 11.1 11.5 11.1 11.4 11.5 11.5 11.6

Overall average processing time per user is stated at the

third row in Table 2. The processing values appears to be

stable (about 11 ms) with different user groups which

provides light initialization.

Fig (4) shows the relation between number of users in

each run and total time taken by the server to process all

users requests. It is obvious that time increases as users

number increases due to more knocks are received and

queued waiting for processing.

Fig 4. Relation between number of users and total knocking time in

seconds at target server.

Server average processing rate of knocking blocks

decreases as number of users increases at each run as shown

in Fig 5. Average processor utilization shown in Fig 6

follows the same behavior as average processed knocking

blocks. This is reasonable as increasing number of users

results in increasing server received packets. Hence, an

increasing part of processor time is consumed in handling

and queueing network traffic which affects available time

assigned to process knocking requests.

Memory utilization is increased gradually with increasing

number of users as shown in Fig 7. Hashing map is used to

store user’s information which improves searching process.

User information includes client ID, knocking sequence,

current knocking position, and user address information.

Memory utilization increases linearly with only 0.1% (0.001

x 2GB of total server memory = 2 MB) for each newly

added 10000 users at each step. This shows minimal

memory footprint is needed to deal with more users.

Fig 5. Relation between number of users and average processed

knocking blocks per seconds.

Fig 6. Relation between number of users and average processor

utilization at server side.

0

10

20

30

40

50

60

70

80

To
ta

l P
ro

ce
ss

in
g

Ti
m

e
 (

Se
co

n
d

s)

Number of users

1300

1350

1400

1450

1500

1550

1600

1650

1700

1
0
0
0
0

2
0
0
0
0

3
0
0
0
0

4
0
0
0
0

5
0
0
0
0

6
0
0
0
0

7
0
0
0
0

8
0
0
0
0

9
0
0
0
0

1
0
0
0
0
0

P
ro

ce
ss

e
d

 K
n

o
ck

in
g

B
lo

ck
s

p
e

r
Se

co
n

d

Number of Users

36.5
37

37.5
38

38.5
39

39.5
40

C
P

U
 U

ti
liz

at
io

n
%

Number of Users

International Conference on Computers and Information, ICCI 2021 stProceedings of 1

122

Fig 7. Relation between number of users in the system and average

memory utilization at server side.

Scenario 2:

In this scenario, system is fed with specific number of
users in one second. Users are generated using python code
with multithreading. Users’ number starts from 50 to 1000
users per second with incremental step of 50 users for each
run. Other configurations are set as mentioned in scenario 1.
Table 3 presents the number of users per seconds at each run
and their corresponding total number of sent packets.

In Fig 8, Average CPU utilization of the server increases
linearly as number of users per second added to the system
increases. As number of processed packets is not big
enough to push the server to its processing limits, more
processor time can be assigned to process knocking blocks
while handling and queuing users’ traffic. Average
knocking block response time increases gradually as well as
shown in Fig 9. This is reasonable due to more requests are
queued until picking it up to be processed. Even at
maximum load of 1000 users/second, server average
response time is still in the range of several milliseconds
(about 2.7 milliseconds at 1000 users/seconds

Fig 8. Average knocking block response time at server side against

number of users per second.

Comparison between several research efforts and the
proposed work is stated in (Table 4) based on provided
features. The proposed approach provides most of features
compared to other approaches. The proposed knocking is
dynamic with multiple knocks in each authentication trial
which hardens the proposed approach. It presents
authentication per service and not for the whole server
running services. Protection against several attacks is
provided through the cooperation between IPS server and
target server. Packet loss and out of order are handled.
Testing service reachability is considered as well.

Processing overhead comparison is based on three

operation complexity levels which are high, medium, and

low. High level is assigned to approaches that include image

processing and certificate authentication. Medium level is

assigned to those which use cryptography based approaches.

At last, low level is assigned to approaches that use clear

information in their knocking. Processing overhead of the

proposed approach is low compared to others. This is

because first and second phases are invoked only at first

client connection. Once knocking sequence is generated, it is

used for multiple future sessions. In addition, clear knocking

information is used without the need to complex operations

like image processing and extensive use of cryptography.

Fig 9. Average CPU utilization at server versus number of submitted users per second.

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

M
em

o
ry

 u
ti

liz
at

io
n

 %

Number of users

0

5

10

15

20

25

30

35

40

5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

3
5
0

4
0
0

4
5
0

5
0
0

5
5
0

6
0
0

6
5
0

7
0
0

7
5
0

8
0
0

8
5
0

9
0
0

9
5
0

1
0
0
0

A
ve

ra
ge

 C
P

U
 U

ti
liz

at
io

n
%

Number of users per one Second

1.5

1.7

1.9

2.1

2.3

2.5

2.7

2.9

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0
3

0
0

3
5

0
4

0
0

4
5

0
5

0
0

5
5

0
6

0
0

6
5

0
7

0
0

7
5

0
8

0
0

8
5

0
9

0
0

9
5

0
1

0
0

0

A
ve

ra
ge

 R
e

sp
o

n
se

 T
im

e
 f

o
r

O
n

e

K
n

o
ck

in
g

B
lo

ck
 (

m
s)

Number of Users per One Second

International Conference on Computers and Information, ICCI 2021 stProceedings of 1

123

TABLE 3: SECOND SCENARIO: SENT COLLECTION OF USER’S PACKETS OVER ONE SECOND.

Users/s 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

Packets 151 295 441 585 733 886 1033 1181 1323 1468 1617 1760 1913 2057 2261 2434 2549 2692 2835 2964

 TABLE 4. COMPARISON BETWEEN THE PROPOSED WORK AND OTHER RESEARCH EFFORTS.

V. CONCLUSION AND FUTURE WORK:

In this research, dynamic knocking approach is proposed.

It consists of three phases. At first phase, user requests

connection to a specific service by providing correct service

information securely to Intermediate IPS. Then client

receives IPS response to able to generate a unique knocking

sequence. At second phase, IPS informs securely the target

service with user future client connection intention and

provide client information to it. Then, target service

generates the same unique knocking sequence as the client.

At third phase, client knocks the service with correct

knocking block to gain access to it. The first and second

phases are used only once at the first connection. Knocking

sequence is used for several future knocking sessions.

Knocking block has variable number of knocks and different

knock ports in each knocking session. This results in robust

and low overhead knocking approach.

The performance of the proposed work is evaluated using

two scenarios. The first scenario generates knocking requests

using a bulk of users up to 100000 users while the second

scenario generates knocking requests by feeding the system

with users of rate up to 1000 users/second. The results show

that the proposed approach has minimal memory footprint,

and average server knocking response time of p2.7

milliseconds at full load.

The proposed approach provides several features

compared to other approaches. Cooperation between IPS and

target service is implemented to provide protection against

malicious activities like DoS attack. Protection against

replay and brute force attacks are provided as knocks

number and ports are always changed. Current knocking

position synchronization between client and server is

considered using matching window to overcome issues like

packet loss and out of order knocking. Testing service

reachability is another feature that enables client to check

connectivity without wasting sequence knocking blocks.

As a future work, extending the scalability of the

dynamic knocking authentication service should be studied.

The service could be implemented at a dedicated server to

handle port knocking authentication at all phases.

Furthermore, distributing the service at several servers would

enable the service to be more scalable and serve more

requests in highly loaded domains.

REFERENCES

[1] M. Krztwinski, "Port knocking Network
Authentication Across Closed ports," SysAdmin
Magazine, p. 4, June-2003.

[2] H. S. Park, Y. B. Jeon and Y. J. Won, "A new
approach to building a diguised server using the honey
port against general scanning attacks," Springer
International publishing, p. 13, 2017.

Comparisons

N
e
e
d

 f
o
r
 e

x
te

r
n

a
l

se
rv

e
r
s

A
u

th
e
n

ti
c
a

ti
o

n
 p

e
r

se
rv

e
r

o
r
 s

e
rv

ic
e?

B
r
u

te
 f

o
rc

e
 i

m
m

u
n

it
y

R
e
p

la
y

 a
tt

a
c
k

im
m

u
n

it
y

D
O

S
 H

a
r
d

e
n

in
g

T
e
st

in
g

 C
o

n
n

e
c
ti

v
it

y

O
u

t
o

f
o

r
d

er
 s

o
lv

in
g

P
a

c
k

e
t

lo
ss

 h
a

n
d

li
n

g

P
r
o
c
e
ss

in
g
 o

v
er

h
ea

d

D
y

n
a
m

ic
 k

n
o
c
k

in
g

M
u

lt
ip

le
 k

n
o
c
k

in
g

p
a

c
k

e
ts

Basic port knocking [1] No Server Yes No No No No No Low No Yes

One time knocking using SPA and IPsec [6] Yes Server Yes Yes No No No No Medium Yes No

Hybrid port knocking [7] Yes Service Yes Yes Yes No Yes No High No Yes

Port knocking with QRC and AES [8] Yes Server Yes Yes Yes No No No Medium Yes Yes

Port knocking against TCP replay [9] No Server Yes No No No No No Low No Yes

Secure port knocking tunneling [10] No Server Yes No Yes No No No Low No Yes

sKnock: Port knocking for masses [5] Yes Service Yes Yes No No No Yes Medium No No

Hiding from automated network scans [3] Yes Server Yes Yes No No No No Medium Yes No

Authentication for access mobile web service [4] Yes Server Yes Yes Yes No Yes No High No Yes

Building disguised server using honey port [2] Yes Service Yes Yes No No No No High Yes No

Proposed approach Yes Service Yes Yes Yes Yes Yes Yes Low Yes Yes

International Conference on Computers and Information, ICCI 2021 stProceedings of 1

124

[3] K. William and B. Azer, "PROVIDE: Hiding from
Automated Network Scans with Proofs of Identity," in
2016 Fourth IEEE Workshop on Hot Topics in Web
Systems and Technologies, Boston, 2016.

[4] K. Mohamed, D. Wijesekera and P. C. Costa, "An
Authentication Mechanism for Accessing Mobile Web
Services," Springer International Publishing, p. 15,
2017.

[5] D. Sel, S. H. Totakura and C. Georg, "sKnock: Port
knocking for Masses," in IEEE 35th Symposium on
Reliable Distributed Systems Workshops, 2016.

[6] J.-H. Liew, S. Lee, I. Ong, H.-J. Lee and H. Lim,
"One-Time Knocking framework using SPA and
IPsec," in 2010 2nd International Conference on
Education Technology and Computer, Shanghai,
China, 2010.

[7] H. Al-Bahadili and H. H. Ali, "Network Security
Using Hybrid Port Knocking," IJCSNS International
Journal of Computer Science and Network Security, p.
4, 2010.

[8] V. Srivastava, A. K. Keshri and A. D. Roy,
"Advanced port knocking authentication scheme with
QRC using AES," in 2011 International Conference on
Emerging Trends in Networks and Computer
Communications (ETNCC) , Udaipur, India, 2011.

[9] F. H. M. Ali, R. Yunos and M. A. M. Alias,
"Simple port knocking method: Against TCP replay
attack and port scanning," in Cyber Security, Cyber
Warfare and Digital Forensic (CyberSec), 2012
International Conference on , Kuala Lumpur , 2012.

[10] P. Mehran, E. A. Reza and B. Laleh, "SPKT:
Secure Port Knock-Tunneling, an enhanced port
security authentication mechanism," in 2012 IEEE
Symposium on Computers & Informatics (ISCI),

Penang, Malaysia, 2012.

[11] B. Mahbooba and M. Schukat, "Digital Certificate-
based Port knocking for connected Embedded
Systems," in 2017 28th Irish Signals and Systems
Conference (ISSC), 2017.

[12] M. Khader, A. Hadi and A. Hudaib, "Covert
Communication Using ort Knocking," in 2016
Cybersecurity and Cyberforensics Conference,
Amman, 2016.

[13] F. v. Eye, M. Grabatin and H. Wolfgang,
"Detecting Stealthy Backdoors and Port Knocking
Sequences through Flow Analysis," DE GRUYTER, p.
97–104, 2015.

[14] H. Liu, Z. Wang and Y. Liu, "Address Knocking:
An Undetectable Authentication Based on IPv6
Address," in 2012 13th International Conference on
Parallel and Distributed Computing, Applications and
Technologies, Beijing, China, Dec. 2012.

[15] R. deGraaf, J. Aycock and M. Jacobson, "Improved
port knocking with strong authentication," in 21st
Annual Computer Security Applications Conference
(ACSAC'05), Tucson, AZ, USA, 2005.

[16] F. Yunos, M. Hani and R. Ali, "Simple Port
knocking Method," in Cyber Security, Cyber Warfare
and Digital Forensic (CyberSec), 2012 International
Conference on, Kuala Lumpur, 2012.

[17] K. Z.A., J. N, A. M.H. and B. A., "Performance
Evaluation of widely used Portknocking Algorithms,"
in High Performance Computing and Communication
& 2012 IEEE 9th International Conference on
Embedded Software and Systems (HPCC-ICESS), 2012
IEEE 14th International Conference on, Liverpool,
2012.

