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Abstract 

The COVID-19 pandemic resulted in millions of infections which led to increased demands on health systems around 
the world. Due to the shortage of diagnostic tools and the stress on radiologists, the need to utilize computer-assisted 
methods to diagnose COVID-19 has increased. There have been many attempts to use deep learning to accelerate the 
process of COVID-19 diagnosis. However, there is still an opportunity for further improvements in the results. In this 
paper, we present a comparative study for COVID-19 diagnosis using multiple convolutional neural networks, as they 
are the most widely used architectures in classification problems. We trained the convolutional neural networks (CNNs) 
using 5-fold cross-validation. We used lung ultrasound images proposed in the Point of Care Ultrasound (POCUS) 
dataset. InceptionV1 achieved the highest results with accuracy and balanced accuracy of 84.3% and 81.8%, respectively. 
Qualitatively, employed architectures show a variation in performance depending on the internal layers of each 
architecture. A deep learning architecture can distinguish similar-looking lung ultrasound pathology, including COVID-
19, that may be difficult to distinguish by pathologists and radiologists.  
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1. Introduction 

Corona Virus Disease of 2019 (COVID-19) is a disease caused by a virus known as severe acute respiratory 
syndrome (SARS-CoV-2) [1]. As of May 2022, there have been over 522 million confirmed cases and over six 
million deaths [2]. COVID-19 was declared by WHO as a pandemic on March 11, 2020 [3]. This pandemic has 
encouraged scientists to start searching for ways to detect it. The key to successfully limiting the spread is early 
detection, isolation, and patient care [4]. 

The available diagnostic methods are based on the detection of viral antigens, human antibodies, or viral 
genes. The most accurate method for identifying viral genes is Reverse Transcription-Polymerase Chain 
Reaction (RT-PCR) [5]. Although WHO has emphasized the significance of testing to fight COVID-19, most 
countries don't have enough labs and resources to do so. Swab procedures and the quality of the lab itself seem 
to have a significant impact on the results of the RT-PCR [6]. 

Convolutional neural networks (CNNs) and deep learning neural networks have succeeded in a variety of 
medical image classification tasks [42–45]. Complex feature extraction is easier when using CNN 
architectures. However, large quantities of data are required in this process. This study analyzes the 
performance of various CNN architectures in classifying ultrasound images into three classes: COVID-19, 
bacterial pneumonia, and healthy. 

For imaging data, Chest X-ray (CXR) and chest Computed Tomography (CT) are the often-used techniques 
in the COVID-19 diagnosis procedure. The diagnosis using chest CT scan may be quicker than using RT-PCR, 
which can take up to two days [7] and requires many tests for conclusive findings. A CT scan takes about 10 to 
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30 minutes [8]. However, chest CT has many disadvantages, such as: it exposes patients to radiation and it is 
also expensive. Pregnant women risk exposing their unborn child to radiation during a CT scan [9], and ionizing 
radiation is harmful to children [10]. Furthermore, some people are allergic to iodine contrast dyes, which are 
often used for CT scans. It also requires sterilization and poses a serious danger of infection among healthcare 
workers [11]. X-rays are the most often used first-line diagnostic imaging method. It shows low sensitivity and 
specificity for COVID-19 (e.g., 89% of chest X-rays in 493 COVID-19 cases were found to be normal) [12, 
13].  

Ultrasound is being used more often in point-of-care settings in the medical field to diagnose acute 
respiratory diseases [14–16]. It is used to diagnose diseases such as pleural effusion, alveolar consolidation, 
interstitial syndrome, and pneumothorax using pathological patterns including B-lines, A-lines, and barcode 
signs [17]. It is a more broadly accessible, cost-effective, safe, and real-time imaging method, which is our 
fundamental motivation to explore this method of diagnosis. 

A significant disadvantage of traditional diagnosis of COVID-19 using LUS is that observing COVID-19 
specific patterns is not easy and requires experienced physiologists. Deep learning (DL) has proved effective in 
medical imaging [25], and some research is now looking towards DL-based methods to help with lung disease 
detection [18]. In COVID-19 patients, lung ultrasound (LUS) has a greater diagnostic sensitivity than CXR 
[19]. Furthermore, radiologists found parallels between LUS and CT [20,21]. Studies have shown that LUS for 
COVID-19 has diagnostic accuracy equivalent to CT [22,23] and is much more sensitive in identifying lung 
imaging biomarkers [24]. COVID-19 patients have a significant visual appearance in subpleural lesions other 
than tuberculosis, cardiogenic pulmonary edema, and bacterial pneumonia. In particular, the B-lines, 
consolidations, uneven pleural lines, pleural effusion, and lung sliding that were shown in CT scans disappeared 
in LUS along with the thickened pleura, consolidation shadow, and ground-glass opacity. Recently, diagnosis 
methods used in medical ultrasound analysis have gained increasing attention, which is based on the revelations 
in deep learning and computer vision. LUS scans can be used as a screening, detection, and follow-up technique 
for any lung disease, hypothetically. 

In this paper, a comparison of several deep learning techniques has been done to evaluate their performance 
of using LUS for COVID-19 detection. The used architectures could be used as a tool to create assistance tools 
for pathologists and radiologists to accelerate the process of COVID-19 diagnosis. 

The organization of the paper is as follows. Section 2 provides a brief review of recent papers relevant to 
this paper, followed by related challenges. Section 3 presents a comparison evaluation of many common CNN 
architectures. The dataset creation procedure and the preparation pipeline are presented in Section 4.1. Finally, 
Section 4.2 and 4.3 presents the performance results with a discussion of our architectures on the lung ultrasound 
dataset.   

2. Related Work 

The literature on exploiting medical imaging and deep learning to diagnose and classify many diseases has 
recently exploded. More publications are appearing on CT and CXR imaging of COVID-19 compared to 
ultrasound. Before COVID-19, many published papers on using ultrasound with deep learning and 
specifically lung ultrasound focus on B-line detection as the most common task [26-28]. Others focus on 
pulmonary lesions [29-33], the extraction of pleural lines [34], or lung cancer diagnosis [35]. 

COVID-19 diagnosis using lung ultrasound with deep learning architectures has been studied in four 
papers so far (Roy et al., 2020 [36]; Born et al., 2021 [37,38]; Diaz-Escobar et al., 2021 [39]). Roy et al. [36] 
utilized the disease score scheme given by Soldati et al. [40] in the detection of COVID-19 disease severity. 
They also utilized a large dataset, but it is not open source. Furthermore, they didn’t perform any image 
processing to enhance the images.  

Born et al. [38] developed a deep learning architecture that derives a disease intensity score from LUS 
scans to help radiologists in the process of diagnosing COVID-19-related lung diseases. The work and its 
extension by Born et al. [37,38] attempt to classify healthy patients, bacterial pneumonia, and COVID-19 
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from LUS frames. The POCUS dataset of LUS imaging is introduced and used in this paper. Born et al. 
[37,38] collected the POCUS dataset from several sources and posted it to their GitHub repository for public 
use [41]. The architecture presented by Born et al. [37] is based on a modified convolutional VGG16 
architecture known as POCOVID-net, with 89% accuracy and 82% balanced accuracy. In their extended work 
[38], POCUS dataset was expanded, and four additional architectures were assessed: two VGG-segment 
architectures using a modified version of the segmentation ensemble introduced in the original work, a 
NasNetMobile architecture, and a VGG network coupled with class activation maps (calculate class-specific 
heatmaps) [37]. The POCOVID-net architecture obtained an accuracy and balanced accuracy of 87% in the 
extended work [38] and had the best 5-fold cross-validation results when compared to other architectures. 
Moreover, they provided a preprocessing pipeline to improve the image quality. 

While previous paper had focused on the classification of LUS images using a VGG16 convolutional 
architecture, Diaz-Escobar et al. [39] went a step further. The convolutional layers of the VGG16 architecture, 
which is pre-trained on ImageNet, create the POCOVID-net architecture. They swapped out the POCOVID-
net [37,38] VGG16 base architecture with one of the following: Inception-V3, Xception, VGG19, and 
ResNet50 CNN architectures, freezing the last fully connected layers. They conclude that the InceptionV3-
based architecture accomplished the highest accuracy and balanced accuracy of 89.1% and 89.3%, 
respectively. According to the results presented in [36–39], there is still an opportunity for improvement in 
COVID-19 detection using LUS scans based on artificial intelligence algorithms. 

3. Methodology 

Particularly, the following CNN architectures were utilized: (sorted chronologically): LeNet-5 [46], 
AlexNet [47], InceptionV1 [48], InceptionV3 [49], ResNet50 [50], InceptionV4 [51], Inception-ResNet-V2 
[51], DenseNet121 [52], ResNext50 [53], Xception [54] and POCOVID-Net [38]. 

In this paper, we used the original implementation of CNN architectures without any pre-initialized weights 
except for POCOVID-Net. Per fold, each architecture was trained with early stopping, 100 epochs, and a batch 
size of 32. For the training, we used the Adam optimization [55] architecture with a learning rate of 0.0001 and 
the categorical cross-entropy loss function and a dropout [56] of 0.5. Depending on the architecture, different 
numbers of trainable layers were used. Table 1 shows CNNs total weights. The number of hidden network 
layers, learning rate, dropout, epoch number, batch size, optimizer and other variables should be changed in 
order to further improve the network performance. This will happen in a subsequent contribution.  

3.1. LeNet-5 

One of the most basic architectures is LeNet-5 [46]. It includes two convolutional layers and three fully-
connected layers. The LeNet-5 network architecture is shown in Fig.1. The average-pooling layer was known 
as a subsampling layer, and it featured trainable weights, which is not common in the design of CNNs currently. 
This design has evolved into the typical blueprint for building CNNs by stacking convolutions with activation 
functions, pooling layers, and finalizing the network with one or more fully-connected layers. The original aim 
of LeNet-5 was to be able to perform optical character recognition. The original image set that was designed 
for LeNet-5 consisted of images of numbers from 0–9 in black and white. Compared to other architectures, the 
architecture is highly compact and straightforward. Although this architecture is basic and simple, we had to 
use it in comparison because it is fundamental and all the upcoming architectures are based on it. 

All images are resized to 32 x 32 pixels, converted to grayscale color mode, and fed through the 
convolutional layers of the architecture. The results are generated with a total of 82,231 trainable parameters. 
We modified the last fully-connected layer to classify the input images into three classes. 

3.2. AlexNet 

AlexNet [47] is a classic convolutional neural network architecture that was introduced in 2012 at the 
ImageNet Large Scale Visual Recognition Challenge. It consists of eight layers: five convolutional and three  
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Fig. 1. Architecture of LeNet-5 [46]. Created by PlotNeuralNet [57]. 

Table 1. CNNs total weights. 

Architecture Total Weights 

LeNet-5 82,231 

AlexNet 58,299,139 

InceptionV1 5,610,259 

InceptionV3 21,808,931 

ResNet50 23,593,859 

InceptionV4 41,179,011 

Inception-ResNet-V2 54,341,347 

DenseNet121 7,040,579 

ResNeXt50 26,515,203 

Xception 20,867,627 

POCOVID-Net 14,747,971 

 

fully-connected layers. Rectified Linear Units (ReLUs) were initially implemented by them as activation 
functions. ReLU got rid of the vanishing gradient problem. Furthermore, it does not limit the output, unlike 
other activation functions, so there is not that much loss of features. They also introduced the use of dropout 
[56] techniques to avoid overfitting. It was the first major CNN architecture that used GPUs for training, which 
led to faster training of architectures. However, the depth of this architecture is very low. Hence, it struggles to 
learn features from image sets. The AlexNet network architecture is shown in Fig.2. 

All images are reduced in size to 227 x 227 pixels and given as input to the convolutional layers of the 
architecture. The results are generated with a total of 58,296,387 trainable parameters and 2,752 non-trainable 
parameters. 

3.3. InceptionV1 

When prior architectures were just going deeper to enhance performance and accuracy while sacrificing 
computational expense, Inception Nets reached a milestone as a CNN classifier. It is worth mentioning that the 
primary distinguishing feature of the design is the rapid adoption of computer resources inside the network.  
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Fig. 2. Architecture of AlexNet [47]. Created by PlotNeuralNet [57]. 

InceptionV1 [48] has 22 layers and over 5 million parameters. It depends on filtering the same region with 
different kernels and then concatenating all features. Research on approximating sparse structures resulted in 
the introduction of an Inception module's architecture. They also added two auxiliary classifiers to enhance 
discrimination in the classifier's lower stages, improve the gradient signal that is transmitted back, and provide 
additional regularization. The auxiliary networks, the branches that are connected to the auxiliary classifier, are 
discarded at inference time. 

All images are reduced in size to 224 x 224 pixels and given as input to the convolutional layers of the 
architecture. The results are generated with a total of 5,595,699 trainable parameters and 14,560 non-trainable 
parameters. 

3.4. InceptionV3 

InceptionV3 [49] is a successor to InceptionV1 [48], with about 24M parameters. InceptionV3 has many 
tweaks to the optimizer, loss function, and adding batch normalization [58], also to the auxiliary layers in the 
auxiliary network. InceptionV3 is considered one of the first designs to use batch normalization. 

It differs from InceptionV1 in three ways: It factorizes a n×n convolutions into asymmetric convolutions: 
1×n and n×1 convolutions. It factorizes 5×5 convolution into two 3×3 convolution operations. Finally, it 
replaces 7×7 with a series of 3×3 convolutions. The reduction of the input dimension of the layers helps in 
avoiding representational bottlenecks, which is the main motivation of InceptionV3. Also, by using 
factorization methods, we can do more efficient computations. 

All images are reduced in size to 299 × 299 pixels and given as input to the convolutional layers of the 
architecture. The results are generated with a total of 21,774,499 trainable parameters and 34,43 non-trainable 
parameters. 

3.5. ResNet50 

We have seen nothing except an increase in the number of layers in the design and improved performance 
over the last several CNNs. However, as network depth increases, accuracy becomes saturated and rapidly 
declines. They addressed this problem with ResNet50 [50] by using skip connections while building deeper 
architectures. They were not the first to use skip connections, but they popularized using them. The basic 
building blocks for ResNets are the convolutional and identity blocks. ResNet is one of the early adopters of 
batch normalization [58] with 26M parameters. Networks with several layers may be readily taught without 
raising the training error percentage. 
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All images are reduced in size to 224 x 224 pixels and given as input to the convolutional layers of the 
architecture. The results are generated with a total of 23,540,739 trainable parameters and 53,120 non-trainable 
parameters. 

3.6. InceptionV4 

InceptionV4 [51] has 43M parameters and it is considered an improvement from InceptionV3 [49]. The 
main differences are the stem group, shown in Fig.3, and a few tweaks to the Inception-C module, shown in 
Fig.4. They additionally used consistent choices for the Inception blocks across all grid sizes. 

InceptionV4 introduced specialized reduction blocks that are used to modify the width and height of the 
grid. Reduction blocks weren't present in the earlier versions; however, the functionality was still present. Those 
residual connections lead to dramatic improvements in training speed. InceptionV4 works better because of the 
increased architecture size. The InceptionV4 network architecture is shown in Fig.5. (B) 

All images are reduced in size to 299 × 299 pixels and given as input to the convolutional layers of the 
architecture. The results are generated with a total of 41,115,843 trainable parameters and 63,168 non-trainable 
parameters. 

 

Fig. 3. Stem block. 

 

Fig. 4. Inception C block. 

3.7. Inception-ResNet-v2 

Inception-ResNet-v2 [51] is a variation of the InceptionV3 [49] architecture, and it is considerably deeper 
than the previous InceptionV3. In this neural network, the inception blocks have been simplified, containing 
fewer parallel towers than in the previous InceptionV3. A batch norm and a ReLU activation function are used 
after each convolutional layer. The Inception-ResNet-V2 network architecture is shown in Fig.5. (A) 

All images are reduced in size to 299 × 299 pixels and given as input to the convolutional layers of the 
architecture. The results are generated with a total of 54,280,803 trainable parameters and 60,544 non-trainable 
parameters. 
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Fig. 5. (A) Overall architecture of the InceptionV4 network [51]. (B) Schema for Inception-ResNet-v2 network. The output sizes in the 
figure correspond to the activation vector tensor shapes of Inception-ResNet-v2 [51]. 

3.8. DenseNet 

The issues with CNNs arise as they get deeper. This is since the path for data from the input layer to the 
output layer gets lengthy and it might vanish before getting to the other side. The connectivity pattern between 
layers proposed in other architectures is made simpler by DenseNets [52]. DenseNets utilize the capability of 
the network through feature reuse rather than obtaining representational power through very deep or wide 
architectures. Contrary to popular belief, DenseNets require fewer parameters than a comparable classic CNN 
since no duplicate feature maps need to be learned.  

In DenseNet [52], each layer is directly connected to any or all alternative layers, and every layer has direct 
access to loss functions and original input signals. The feature-maps of all preceding layers are concatenated 
and used as inputs for any particular layer, and its feature-maps area unit is used as inputs into all subsequent 
layers. DenseNet has four dense blocks and transition layers between two consecutive dense blocks. Every 
dense block consists of many convolution layers, and every transition layer has a convolutional layer and an 
average pooling layer. The output layer is a fully-connected layer with a softmax activation performed with 
three neurons for three class classifications. 

DenseNet improved data flow through the network and reduced the vanishing gradient problem. It enhanced 
feature reuse and reduced overfitting by using dense connections. Also, each layer provides a collective 
knowledge of the network. However, this neural network is very expensive in terms of space and time 
complexity. 

All images are reduced in size to 299 × 299 pixels and given as input to the convolutional layers of the 
architecture. The results are generated with a total of 6,956,931 trainable parameters and 83,648 non-trainable 
parameters. 

3.9. ResNeXt50 

ResNeXt50 [53] has about 25M parameters. The main difference between ResNeXts is the addition of 
parallel branches within each module rather than sequential layers. Their novel contribution is to scale up the 
number of cardinalities within a module. They were the first to introduce cardinality. It refers to the number of 
transformations in the set. 32 topology blocks make up the architecture, hence 32 is the cardinality value. 
Because of using the same topology, fewer parameters are required while more layers are added to this 
architecture. 

All images are resized to 224 x 224 pixels, and fed through the convolutional layers of the architecture. The 
results are generated with a total of 26,446,979 trainable parameters and 68,224 non-trainable parameters. 

3.10. Xception 

Xception [54] is a modification of the Inception architecture that uses depthwise separable convolutions in 
place of the normal Inception modules. They were the first to introduce CNN based entirely on depthwise 
separable convolution layers. 



8     Ola G. Elkhouly, Mohamed G. Malhat, Arabi E. Keshk, Maha M. Elsabaawy 

Xception takes the Inception hypothesis to an extreme. The Inception hypothesis consists of firstly, cross-
channel (or cross-feature map) correlations are captured by 1×1 convolutions. Consequently, spatial correlations 
within each channel are captured via the regular 3×3 or 5×5 convolutions. Taking this idea to an extreme means 
performing 1×1 to every channel, then performing a 3×3 to each output. This is identical to replacing the 
Inception module with depthwise separable convolutions. 

All images are reduced in size to 299 × 299 pixels and given as input to the convolutional layers of the 
architecture. The results are generated with a total of 20,813,099 trainable parameters and 54,528 non-trainable 
parameters. 

3.11. POCOVID-Net 

POCOVID-Net [38] uses the convolutional part of VGG16 [59], followed by one hidden layer of 64 neurons 
with ReLU activation, a dropout of 0.5 [56], and batch normalization [58], and further by the output layer with 
softmax activation. It is pre-trained on ImageNet. The POCOVID-Net network architecture is shown in Fig.6. 

All images are reduced in size to 224 × 224 pixels and given as input to the convolutional layers of the 
architecture. The results are generated with a total of 14,747,843 trainable parameters. 

 

Fig. 6. POCOVID-Net Architecture [38]. 

4. Results and Discussion 

4.1. Dataset 

We utilized the POCUS dataset collected by Born et al. for all the experiments in this research [41]. The 
dataset combines data from collaborating hospitals as well as publicly available resources from the web (e.g., 
publications and educational websites), and it can be found on their GitHub repository, which is open to the 
public. To our knowledge, this is the most comprehensive source of COVID-19 LUS data available to the 
public. The POCUS dataset contains 85 images and 197 videos with a convex probe and 14 images and 64 
videos with a linear probe. Fig.7 shows the distribution of the samples. The POCUS dataset gathered from 41 
different sources, such as clinical information supplied by hospitals or academics teaching ultrasound courses, 
LUS recordings published in other scholarly journals, community platforms, public medical repositories, and 
health-tech companies. As follows, the videos varied in length and frame rate (160±144 frames per second, 
2510Hz). Furthermore, not all videos have patient metadata since there are many different data sources. 

The preprocessing of the images and videos is performed as Born et al. [38] suggested. The preprocessing 
phase is employed to maintain the numerical stability of the architectures and reduce the covariance shift. At a 
frame rate of 3Hz, ultrasound videos were separated into images. Before being scaled to 224x244 pixels, all 
photos were cropped to a quadratic window, eliminating measure bars, text, and artifacts on the borders. Fig.8 
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shows samples of ultrasound images after preprocessing. To avoid overfitting, data augmentation adjustments 
such as rotations (up to 10 degrees), flips (horizontally and vertically), and shifts (up to 10 percent) were 
implemented. Our dataset consisted of 2941 images after video sampling and image preprocessing, with 1305 
images corresponding to COVID-19, 446 images corresponding to bacterial pneumonia, and 1190 images 
corresponding to healthy images. Fig.9 shows the number of images in each class after video sampling. 

 

Fig. 7. Distribution of images and videos. Most samples use the convex probe. 

 

Fig. 8. Sample of ultrasound images in the dataset. 

 

Fig. 9. The number of images in each class after video sampling. 
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Experiments were conducted on Google Colab with an NVIDIA Tesla P100 PCIe 16GB GPU. 
Additionally, Python was used to implement each architecture using Keras library.  

All findings were obtained using 5-fold cross-validation using the number of samples per class. Because 
the data was split at the patient-level [38], it was ensured that the frames of a single video was only present at 
one-fold and that the number of videos per class was consistent across all folds 

Fig.10 shows the leave-one-out technique of the 5-fold cross-validation. Cross-validation is a method of 
repeatedly rebuilding the architecture using different combinations of training and testing data. The accuracy 
results for each fold are averaged. The advantage of n-fold cross-validation is that the training data is 
maximized, and it is deterministic. The disadvantage is that it is extremely computationally intensive. 

 

Fig. 10. Leave-one-out technique of the 5-fold cross-validation. 

4.2. Evaluation Metrics 

Different performance metrics were used to assess the trained architectures includes precision, recall, F1-
Score, MCC, specificity, accuracy, and balanced accuracy for each architecture.  

Precision is the ratio between the true positives (TP) and all the positives (i.e., true positives and false 
positives (FP)). It is the percentage of correctly classified cases among those classified as positive. (1) shows 
the formula to calculate the precision. In contrast to precision, which only focuses on the correct true positives 
out of all positive predictions, recall indicates missing positive predictions. Recall, which is also called 
sensitivity, is the ratio of correctly predicted positive cases (i.e., true positives) to the actual class observations 
(i.e., true positives and false negatives (FN)). (2) shows the formula to calculate the recall. The number of the 
actually correct predictions is indicated by both precision and recall. False-positives are considered in the 
precision metric, whereas false-negatives are considered in the recall metric. 

 

                                                                   (1) 

   

                                                                       (2) 

 
The weighted average of precision and recall is the F1-score. Neither accuracy nor recall tell the whole 

story. We might have high precision with low recall or low precision with high recall. The F1-score allows 
you to convey both concerns with a single metric. (3) shows the formula to calculate the recall. 



 International Journal of Computers and Information 10-1 (2023) 1–17              11 

                                                           (3) 

 
The Matthews correlation coefficient (MCC) is a more accurate statistical rate that only gives a high score 

if the prediction is correct in all four areas of the confusion matrix (true-positives, false-negatives, true-
negatives, and false-positives) [60]. (4) shows the formula to calculate MCC. 

 
                                          (4) 

 
Specificity is the ability of a test to correctly identify people without the disease. It is the percentage of 

cases without the disease that are classified as negative. (5) shows the formula to calculate the specificity. 

 

                                                                  (5) 

 
Accuracy and balanced accuracy (for data from classes with imbalances) show the proportion of correct 

predictions among all data samples and are used to evaluate the overall approach performance. (6) shows the 
formula to calculate the accuracy, and (7) shows the formula to calculate the balanced accuracy. 

 

                                                  (6) 

 

                                               (7) 

 
The confusion matrix is a specific table layout that allows visualization of the performance of an 

algorithm. It reports the number of correct and incorrect predictions for each class. 

4.3. Statistical Analysis 

In medical image analysis and computer vision applications, the ability to quantify conditions of high 
uncertainty is critical. The mean 5-fold cross-validation results from the various CNN architectures are shown 
in Table 2. It is worth noting that for COVID19 classification, it is more crucial to lower the number of false 
negatives (high recall) than false positives (low recall). 

InceptionV1 outperformed the architectures with accuracy and balanced accuracy of 84.3% and 81.8%, 
respectively. It exceeds the accuracy of POCOVID-Net by 1.7% and even uses parameters 2.6 times less, with 
just 5.6M parameters, which has a huge effect on time and space complexity. Xception CNN achieves the 
highest precision in classifying COVID-19 and pneumonia with 93% and 80%, respectively. Most CNNs are 
struggling to distinguish between COVID-19 and pneumonia. In contrast, ResNeXt50 achieved the worst 
accuracy and balanced accuracy of 74.5% and 71.9%, respectively.  

Note as well that Inception-based architectures, particularly InceptionV1, InceptionV4, and Xception, 
achieve higher accuracy and balanced accuracy values than other architectures. This can be related to the 
architecture's ability to learn spatial patterns and detect features at varying scales. The common layers in 
Inception-based architectures are the inception module. This module combines different filter sizes into a 
single image block rather than being limited to a single filter size, which we then concatenate and pass onto 
the next layer. Furthermore, this goes in line with the findings of Diaz-Escobar et al. [39]. Fig.11 shows the 
confusion matrices of architectures with high performance, including InceptionV1, InceptionV4, Xception 
and POCOVID-Net.  
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Table 2. A comparison of the different CNN architectures using 5-fold cross-validation. The best architecture for each class and column 
is shown in bold. 

Architecture Classes Precision Recall F1-Score MCC Specificity 

LeNet-5 
Accuracy: 76.6% 
Balanced: 72.3% 
#Params: 0.08 M 

COVID-19 0.77±0.16 0.83±0.10 0.79±0.13 0.59±0.29 0.76±0.20 

Pneumonia 0.79±0.16 0.62±0.14 0.68±0.12 0.65±0.13 0.97±0.02 

Healthy 0.73±0.29 0.72±0.31 0.72±0.30 0.59±0.41 0.87±0.11 

AlexNet 
Accuracy: 78.9% 
Balanced: 74.9% 
#Params: 58.3 M 

COVID-19 0.75±0.09 0.84±0.19 0.79±0.13 0.61±0.22 0.77±0.10 

Pneumonia 0.79±0.18 0.65±0.12 0.72±0.14 0.68±0.16 0.97±0.02 

Healthy 0.85±0.20 0.75±0.14 0.79±0.14 0.69±0.20 0.90±0.13 

InceptionV1 
Accuracy: 84.3% 
Balanced: 81.8% 
#Params: 5.6 M 

COVID-19 0.84±0.10 0.88±0.09 0.86±0.09 0.73±0.20 0.84±0.13 

Pneumonia 0.80±0.14 0.77±0.14 0.76±0.09 0.74±0.09 0.97±0.02 

Healthy 0.86±0.17 0.80±0.15 0.83±0.15 0.74±0.21 0.93±0.07 

InceptionV3 
Accuracy: 77.2% 
Balanced: 75.1% 
#Params: 21.8 M 

COVID-19 0.77±0.23 0.78±0.24 0.77±0.22 0.59±0.41 0.79±0.19 

Pneumonia 0.70±0.23 0.73±0.23 0.71±0.23 0.65±0.29 0.94±0.06 

Healthy 0.81±0.27 0.74±0.26 0.77±0.25 0.66±0.37 0.89±0.13 

ResNet50 
Accuracy: 78.8% 
Balanced: 73.2% 
#Params: 23.6 M 

COVID-19 0.79±0.14 0.86±0.11 0.81±0.12 0.62±0.28 0.75±0.24 

Pneumonia 0.70±0.12 0.63±0.17 0.66±0.15 0.61±0.16 0.96±0.02 

Healthy 0.83±0.21 0.71±0.29 0.74±0.25 0.66±0.32 0.92±0.10 

InceptionV4 
Accuracy: 84.2% 
Balanced: 80.9% 
#Params: 41.1 M 

COVID-19 0.86±0.11 0.83±0.08 0.84±0.09 0.71±0.17 0.87±0.12 

Pneumonia 0.80±0.10 0.76±0.16 0.78±0.12 0.74±0.14 0.96±0.05 

Healthy 0.84±0.10 0.83±0.18 0.83±0.14 0.75±0.16 0.90±0.07 

Inception-ResNet-V2 
Accuracy: 79.6% 
Balanced: 75.6% 
#Params: 54.3 M 

COVID-19 0.79±0.22 0.77±0.27 0.78±0.24 0.63±0.37 0.86±0.11 

Pneumonia 0.73±0.16 0.64±0.21 0.66±0.17 0.61±0.20 0.94±0.06 

Healthy 0.82±0.22 0.85±0.17 0.83±0.20 0.73±0.31 0.88±0.15 

DenseNet121 
Accuracy: 79.9% 
Balanced: 78% 
#Params: 7 M 

COVID-19 0.83±0.20 0.75±0.28 0.78±0.26 0.66±0.34 0.91±0.07 

Pneumonia 0.70±0.17 0.74±0.11 0.71±0.13 0.66±0.17 0.93±0.07 

Healthy 0.80±0.20 0.85±0.14 0.82±0.17 0.70±0.29 0.85±0.16 

ResNext50 
Accuracy: 74.5% 
Balanced: 71.9% 
#Params: 26.5 M 

COVID-19 0.76±0.16 0.79±0.16 0.77±0.15 0.55±0.32 0.76±0.22 

Pneumonia 0.69±0.28 0.66±0.26 0.64±0.21 0.58±0.28 0.90±0.09 

Healthy 0.83±0.14 0.71±0.27 0.74±0.22 0.66±0.23 0.92±0.05 

Xception 
Accuracy: 78% 
Balanced: 76.5% 
#Params: 20.8 M 

COVID-19 0.93±0.05 0.71±0.36 0.72±0.36 0.66±0.33 0.94±0.07 

Pneumonia 0.80±0.18 0.65±0.34 0.61±0.32 0.59±0.31 0.97±0.03 

Healthy 0.81±0.26 0.94±0.07 0.84±0.20 0.72±0.36 0.77±0.39 

POCOVID-Net 
Accuracy: 82.6% 
Balanced: 81.7% 
#Params: 14.7 M 

COVID-19 0.82±0.12 0.85±0.16 0.83±0.14 0.68±0.25 0.84±0.10 

Pneumonia 0.79±0.07 0.84±0.10 0.81±0.07 0.77±0.09 0.95±0.05 

Healthy 0.84±0.15 0.77±0.16 0.80±0.16 0.71±0.21 0.93±0.05 
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Fig. 11. 5-fold cross-validation results: Confusion Matrices. 
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5. Conclusion 

Lung ultrasound is a potentially high-impact method for COVID-19 diagnosis. This paper compares and 
analyzes numerous CNN architectures using ultrasound images; publicly available in the POCUS dataset. On 
this basis, we conclude that CNNs can classify ultrasound images with high accuracy, which could be beneficial 
as an assistant tool for radiologists. The analysis emphasizes the importance of the Inception architectures. 
Future work should consider the potential effects of image processing in the process of COVID-19 diagnosis. 
In addition, a more robust and homogeneous dataset will lead to better results. Furthermore, it will be interesting 
to investigate the enhancements in classification results when using transfer learning and pre-trained 
architectures. 
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