

IJCI v10-01(2023) 18-35
International Journal of Computers and Information

(IJCI)
Available online at https://ijci.journals.ekb.eg/

Assessment Reliability for Open-Source Software using
Probabilistic Models and Marine Predators Algorithm
Islam S.Ramadana, Hany M. Harba, Hamdy M. Mousab, Mohamed G. Malhatb

a Computer Science Department, Faculty of Information Technology, MUST University, 6th of October city 77, Egypt
b Computer Science Department, Faculty of Computers and Information, Menoufia University, Shebin Elkom 32511, Egypt
Islam.saied@must.edu.eg, hany.harb@must.edu.eg, hamdimmm@hotmail.com, m.gmalhat@yahoo.com

Abstract

 With the advancement of technology today, computer software has a high effect in different areas of our life. In
particular open-source software is used by many software companies because it helps them to create their new software
without implementing it from scratch. Therefore, the quality of open-source software is a significant issue and one of
the most popular research topics in the literature. Checking software reliability during the development cycle is an
indicator of releasing the software or not. In this paper, we propose to use Marine Predators Algorithm with six
probabilistic models for assessing reliability more accurately. We select three versions of a standard dataset for GNU’s
Not Unix Network Object Model Environment projects. We compare the implemented models by three evaluation
criteria: mean square error, sum of square error, and reliability. The results for all versions of the dataset show that
SRGM-5 is based on the methodology of imperfect debugging estimates the most accurate reliability results in terms of
mean square error and sum of square error.

Keywords: Software reliability; Probabilistic models; Marine Predators Algorithm; Open-source software;

1. Introduction

Software is a group of instructions that ask the computer to execute specific tasks [1].Today
computer software has been used in all areas of our life like education, marketing, medicine, and
military [2]. For example, the medical diagnosis system in the medical field discovers the disease
according to laboratory data and the patients' symptoms [3]. Computer software is divided into two
categories:

First, open-source software (OSS) is a computer program its implementation code is accessible
with no charge. The copyright of OSS allows the users to distribute, use, and modify the source
code easily [4]. For example:- WordPress, Drupal, Ubuntu, Open Office, and Firefox [5].

Second, closed source software (CSS) is a computer program that will be available only when you
buy it from the publisher. You can use it only and are not allowed to make redistribution or
modifications [6].

There are a lot of advantages for OSS Over CSS, such that:

First, freedom to use: It’s available for free, and this gives software companies a chance to
modify OSS source code to meet their needs [7].

Second, self-Reviewing: The availability of OSS code allows anyone to review the code and
not be limited to paid security analysts [8].

https://ijci.journals.ekb.eg/
mailto:hamdimmm@hotmail.com
mailto:m.gmalhat@yahoo.com

 International Journal of Computers and Information 10-1 (2023) 18–35 19

Third, number of Reviewers: If the largest software companies develop CSS, it will be
reviewed by a limited number of reviewers. On the other side, OSS has a lot of contributions
that can access and review the code easily [8].

Fourth, software Cost: OSS doesn’t need any licensing fees [9].

According to the advantages of OSS listed above, many applications used today in different fields
depend on OSS. Actually, between 80% and 90% of current software use OSS such that software
developers make modifications for OSS code to develop new software without building it from scratch
[10]. The performance and quality of OSS is a significant area in the literatures [11-14] . Different
approaches and methods have been proposed to evaluate and assess OSS [15]. We can do that by
assessing the reliability of the software [15]. Assessment software reliability is a critical metric because
of a lot of reasons, such as, as mentioned in [16]: First, it determines the approval or the failure of the
software. Second, reliability assessment helps us to deliver the perfect software to the customer. So
there exist different models to evaluate the reliability of OSS, such that these models divided into two
types [17]:

First, deterministic models: examine the code of the software without adding any random
values or events, such as McCabe’s Cyclomatic Complexity and Halstead Model [17].

Second, probabilistic models: define the cases of failures and the error correction as random
events, such as Input Domain, Error Seeding, Failure Rate, and Curve Fitting [17].

The majority of the previous works use probabilistic models in assessing reliability because these
models depend on error correction, cases of failures, and evaluate the number of cumulative faults
noticed in a specific time [18]. The prediction ability of probabilistic models mainly depends on the
values of their parameters so if the models' parameters are estimated accurately, the reliability would
also be accurate [18]. The traditional estimation techniques like least square estimation (LSE) [19] and
maximum likelihood estimation (MLE) [19] are not the ideal solutions [18], and both of them are used
by the literatures as in [20- 24].

In this paper, we need to enhance the assessment of the reliability of open-source software. To
achieve this goal, we select six software reliability growth models (SRGMs) proposed in the previous
related works [20,24] because SRGMs are used to determine software reliability [18]. With the selected
SRGMs, we use the Marine Predators Algorithm (MPA), which is a new nature-inspired metaheuristic
algorithm [25], as an estimation technique for the SRGMs' parameters to estimate these parameters
accurately because of a lot of reasons as follows: First, the software failures are stochastic naturally,
and we need to use an estimation technique that maps this stochastic behaviour [18]. Second, as
mentioned above, both LSE and MLE are traditional estimation techniques, and they are not the ideal
solution Third, for software reliability prediction, parameter estimation has the highest priority [26].
Fourth, any SRGM's ability for prediction depends on the values of its parameters, so SRGMs need the
best technique for parameter estimation [27]. Finally, after MPA uses each SRGM's mean value
function as an objective function to estimate its parameters, we make substitutions with these
parameters in equation (29). We perform the previously explained steps for three different versions of
OSS, which is GNU’s Not Unix Network Object Model Environment (GNOME) projects that is
available at [28]. We compare the selected models by various evaluation criteria to assess the
performance of the chosen models and decide the best model for assessment reliability to answer the
essential issue of which model is optimal for assessment reliability. The empirical results indicated that
SRGM-5 is the most accurate model for assessment reliability for all versions of GNOME projects. It
is based on the methodology of imperfect debugging [20]. Furthermore, SRGM-6 is the least efficient
model for assessment reliability for all versions of GNOME projects. It is based on the methodology
of Gompertz distribution [24].

The remaining parts of the paper are organized into sections, such that Section II covers the related
work in reliability assessment for OSS. Section III represents the proposed work. Section IV illustrates
an empirical study for the selected models with various criteria over three versions of datasets. Finally,
section V represents the conclusion of the paper.

20 Islam S.Ramadan, Hany M. Harb, Hamdy M. Mousa, Mohamed G. Malhat

2. Related Work

Recently, many research papers focused on estimating the reliability of OSS, and this is due to the
importance of OSS. Software companies implement their new software depending on OSS
significantly. One research paper written by Gandhi et al. in [20] proposed five OSS reliability models
based on two methodologies: First, perfect debugging methodology and second, imperfect debugging
methodology. Use dataset for GNOME that is available at in [28] to test the proposed models. Estimate
the values of the model’s parameters using least square estimation. The experimental results show that
the models based on imperfect debugging methodology have more fitting results than other models.

Zhu et al. in [21] proposed a model for assessing OSS reliability without neglecting the relationship
between faults in the previous and recent releases. Use Juddi dataset that is available at [29] and
Apache dataset that is available at [30] to estimate reliability for both of them. The proposed model
estimates reliability more accurately than other models utilized in the comparison.

Diwakar and Aggarwal [22] suggest the faults of the current software version are divided into two
parts: First, the previous version’s faults will still exist in the current version. Second, the new faults
caused by any updates of the code. Use Apache dataset that is available at [30] , and estimate reliability
by the proposed model. The proposed model estimates reliability more accurately than other models
utilized in the comparison.

Wang in [23] proposes a model with fault introduction established on the distribution of generalized
Pareto. Use dataset for three different Apache projects: Avro, Beam, and GORA, that are available at
[30] to test the proposed model. Estimate the values of the model’s parameters using LSE. The results
clarify the high efficiency of the proposed model, and it’s fitting results are better than other models
utilized in the comparison.

Yaghoobi in [24] proposes a model to estimate reliability for a tandem software dataset that is
published in [30] and compares this model with other models to select the optimal one for assessment
reliability. The results show that the proposed model is the best one.

All related works assess the reliability by a list of SRGMs and estimate the parameters of these
SRGMs using LSE. In our proposed work, we assess the reliability of OSS by using the proposed
SRGMs that already exist in the related works and MPA to estimate the parameters of the implemented
SRGMs. After that, we substitute with the estimated parameters in equation (29). Consequently, the
estimation technique for SRGMs' parameters is the difference between the related works and our
proposed work.

3. The proposed Work

We assess the reliability of OSS using six probabilistic models and Marine Predators Algorithm by
using SRGM’s mean value function as an objective function for the MPA estimation technique. MPA
estimates SRGM's parameters using a specific version of the OSS dataset. After that, we make a
substitution with these parameters in the reliability equation (29). The reliability assessment of OSS
consists of two stages. In the first stage, we run the MPA code 30 times and take the average of all
estimated parameters and the estimated evaluation metrics to be confident of the result's accuracy because
MPA estimates different values every time we run its code. We move on to the second stage after
computing the SRGM's parameters, which will be an input to make a substitution directly in the reliability
equation (29) to know the reliability of the used version of the OSS dataset based on the selected SRGM.
We can describe the framework for our proposed work as illustrated in Fig.1.

As mentioned above we assess the reliability of OSS using six probabilistic models and Marine
Predators Algorithm both of them will be explained in detail as follows:

 International Journal of Computers and Information 10-1 (2023) 18–35 21

3.1. Probabilistic Models
We select six models from the probabilistic category [20,24]. These models are based on three

methodologies: perfect debugging methodology, imperfect debugging methodology, and Gompertz
distribution methodology [20,24]. Both perfect and imperfect debugging have different cases, such that
each case has specific fault content function [20].

Fault content function represents the number of users working on the operational phase of OSS and
is described by a(N). this function shows the relation between number of users deal with OSS and the
modification rate in its code, such that the more number of OSS' users, the more modification rate in
its code , and hence the possibility of increasing the fault content also [20].

The methodologies of the selected proposed models from the previous related works are discussed
as follows:

First, perfect debugging methodology: This methodology assumes that the process of detecting
faults does not produce any additional faults and it includes one case only [20].

Case 1: The fault content's function is described by α(N) equals to constant a. This case assumes
that the process of debugging does not produce any additional faults. SRGM-1 uses this case, and
the function of this case as follows [20]:

𝑎𝑎(𝑁𝑁) = 𝑎𝑎 (1)

Such that a represents The initial number of faults in the software, and N refers to the cumulative
number of the software's users in the time interval (0,1] [20].

Second, imperfect debugging methodology: This methodology assumes that there is an
opportunity of getting more new faults while fixing the existing ones. It has four cases [20].

Case 2: we assumed the faults' number to be a linear function of users' number. SRGM- 2 uses
this case, and the function of this case as follows [20]:

𝑎𝑎(𝑁𝑁) = 𝑎𝑎(1 + 𝛼𝛼𝛼𝛼) (2)

Such that both a and N are referred to as mentioned in case 1 and 𝛼𝛼 refers to the rate of error
generation [20].

Case 3: we assumed that an exponential function for fault content, and this means that the
introduction of the faults is exponential for users. SRGM-3 uses this case, and the function of this
case as follows [20]:

𝑎𝑎(𝑁𝑁) = 𝑎𝑎𝑒𝑒𝛼𝛼𝛼𝛼 (3)

Such that both a, N, and 𝛼𝛼 are referred to as mentioned in case 2 [20].

Case 4: we assumed that the new fault’s introduction rate as a function of the faults' number,
which already released from the software. SRGM-4 uses this case, and the function of this case
as follows [20]:

𝑎𝑎(𝑁𝑁) = 𝑎𝑎 + 𝛼𝛼𝛼𝛼(𝑁𝑁) (4)

 Such that both a, N, and 𝛼𝛼 are referred to as mentioned in case 2, and m refers to the number of
expected faults removed in time interval (0,t] [20].

Case 5: we assumed that the introduction of new faults is exponentially per noticed faults. SRGM-
5 uses this case, and the function of this case as follows [20]:

𝑎𝑎(𝑁𝑁) = 𝑐𝑐 + 𝑎𝑎(1 − 𝑒𝑒−𝛼𝛼𝛼𝛼) (5)

Such that both a, N, and 𝛼𝛼 are referred to as mentioned in case 2, and c is supposed as constant.

Third, gompertz distribution methodology: This methodology is a kind of mathematical model
that acts as a growth model. SRGM-6 uses this case, and It has two assumptions as follows [24]:

22 Islam S.Ramadan, Hany M. Harb, Hamdy M. Mousa, Mohamed G. Malhat

 First, initial faults' number is relied on Poisson distribution with a parameter a.
Second, the failures happen at independent random times by the Gompertz distribution with the
cumulative function:

𝐹𝐹(𝑡𝑡) = 1 − 𝑒𝑒�1−𝑒𝑒𝑏𝑏𝑏𝑏� (6)

Such that b refers to the rate of removing fault.

Every SRGM from the selected models has a mean value function depends on the case of the model
as listed above. The mean value functions for each SRGM are as follows [20,24]:

The SRGM-1 has a mean value function estimated by
𝑚𝑚1(𝑡𝑡) = 𝑎𝑎(1 − 𝑒𝑒−𝑏𝑏𝑏𝑏) (7)

Such that m1(t) refers to the number of predictable faults that will be removed in time interval
(0,1], a refers to the initial faults in a software, and b refers to the rate of removing faults [20].

The SRGM-2 has a mean value function estimated by

𝑚𝑚2(𝑡𝑡) = 𝑎𝑎(𝛼𝛼 + (1 − 𝛼𝛼
𝑏𝑏

)(1 − 𝑒𝑒−𝑏𝑏𝑏𝑏)) (8)

Such that a, b are referred to as mentioned in equation (7), m2(t) refers to the number of
predictable faults that will be removed in time interval (0,1], 𝛼𝛼 refers to the rate of error
generation, N refers to the cumulative number of the software's users in the time interval (0,1]
[20].

The SRGM-3 a mean value function estimated by

𝑚𝑚3(𝑡𝑡) = 𝑎𝑎𝑎𝑎
𝛼𝛼+𝑏𝑏

 (𝑒𝑒𝛼𝛼𝛼𝛼 − 𝑒𝑒−𝑏𝑏𝑏𝑏) (9)

Such that a, b, N, 𝛼𝛼 are referred to as mentioned in equation (8), m3(t) refers to the number of
predictable faults that will be removed in time interval (0,1] [20].

The SRGM-4 has a mean value function estimated by

𝑚𝑚4(𝑡𝑡) = 𝑎𝑎
1−𝛼𝛼

 (1 − 𝑒𝑒−𝑏𝑏(1−𝛼𝛼)𝑁𝑁) (10)

Such that a, b, N, 𝛼𝛼 are referred to as mentioned in equation (8), m4(t) refers to the number of
predictable faults that will be removed in time interval (0,1] [20].

The SRGM-5 has a mean value function estimated by

𝑚𝑚5(𝑡𝑡) = (𝑎𝑎 + 𝑐𝑐)(1 + 𝑒𝑒−𝑏𝑏𝑏𝑏) − 𝑎𝑎𝑎𝑎
𝑏𝑏−𝛼𝛼

(𝑒𝑒−𝛼𝛼𝛼𝛼 − 𝑒𝑒−𝑏𝑏𝑏𝑏) (11)

Such that a, b, N, 𝛼𝛼 are referred to as mentioned in equation (8), m5(t) refers to the number of
predictable faults that will be removed in time interval (0,1], c supposed as constant [20].

The SRGM-6 has a mean value function estimated by

𝑚𝑚6(𝑡𝑡) = 𝑎𝑎(1 − 𝑒𝑒(1−𝑒𝑒𝑏𝑏𝑏𝑏)) (12)

Such that a, b are referred to as mentioned in equation (8), t refers to calendar time [24].

It's known that OSS has a lot of advantages, such as OSS supports propagation innovation because
its source code is available between people [20]. OSS are used by two kinds of people, which are First,
Innovators: people who use OSS because they are already interested in software. Second, Imitators:
people who use OSS after Innovators candidate it to them [20]. The availability of a new product or
idea between people over time is known as diffusion [20]. As a result for that, Bass model defines the
mathematical representation of diffusion process using the following equation [20]:

𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

= (𝑝𝑝 + 𝑞𝑞 𝑁𝑁(𝑡𝑡)
𝑁𝑁′

)(𝑁𝑁′ − 𝑁𝑁(𝑡𝑡)) (13)

 International Journal of Computers and Information 10-1 (2023) 18–35 23

Such that N(t) represents cumulative of adopters’ number at time t, p(N’ – N(t)) refers to numbers
of Innovators, therefore p refers to the coefficient of innovation, and 𝑞𝑞 𝑁𝑁(𝑡𝑡)

𝑁𝑁′
(𝑁𝑁′ − 𝑁𝑁(𝑡𝑡)) refers to

numbers of Imitators, therefore q refers to the coefficient of imitation. Under the initial condition of
N(0)=0 the solution of equation (13), and the result in which is evaluated as follows:

𝑁𝑁(𝑡𝑡) = 𝑁𝑁′ 1−𝑒𝑒−(𝑝𝑝+𝑞𝑞)𝑡𝑡

1+𝑞𝑞𝑝𝑝𝑒𝑒
−(𝑝𝑝+𝑞𝑞)𝑡𝑡 (14)

For each N parameter which refers to the cumulative number of the software's users in the time
interval (0,1] in equation (7) to equation (11) is equal to N(t), which is represented by equation (14),
so every N = N(t) that represents the number of users of OSS in specific time t [20].

3.2. Marine Predators Algorithm

Marine Predators Algorithm is a new nature-inspired metaheuristic influenced basically by food-
finding techniques of ocean predators, such as Brownian and Lévy motions. Because the prey is a
predator while it hunts for food, MPA considers both predator and prey as search agents [25].

According to equation (15), ai is the initial population in each search agent, and it is initialized
randomly. The equation's variables have lower and upper bounds represented by amin and amax
respectively, r represents a random value from 0 to 1 [25].

𝑎𝑎𝑖𝑖 = 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑟𝑟(𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚) (15)

MPA defines the best predators in a matrix called E for Elite and described mathematically in
equation (16), and there exists another matrix for preys called P described mathematically in equation
(17) [25].

𝐸𝐸 =

⎣
⎢
⎢
⎡𝑎𝑎1,1

𝐼𝐼 𝑎𝑎1,2
𝐼𝐼 … 𝑎𝑎1,𝑑𝑑

𝐼𝐼

𝑎𝑎2,1
𝐼𝐼 𝑎𝑎2,2

𝐼𝐼 … 𝑎𝑎2,𝑑𝑑
𝐼𝐼

… … … …
𝑎𝑎𝑛𝑛,1
𝐼𝐼 𝑎𝑎𝑛𝑛,2

𝐼𝐼 … 𝑎𝑎𝑛𝑛,𝑑𝑑
𝐼𝐼 ⎦
⎥
⎥
⎤
 (16)

Open-source
software Dataset

Software reliability
growth model equation

Marine Predators
Algorithm

Estimate software
reliability growth

model's parameters

Estimate the
evaluation metrics

The estimated
software reliability

growth model's
parameters

Make substitution in
𝑀𝑀𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑅𝑅𝑖𝑖 = 𝑀𝑀𝑖𝑖(𝑡𝑡)

𝑎𝑎𝑖𝑖
 Final result for

reliability

First Stage

Fig. 1. The framework for our proposed work.

Second Stage

24 Islam S.Ramadan, Hany M. Harb, Hamdy M. Mousa, Mohamed G. Malhat

𝑃𝑃 = �

𝑎𝑎1,1 𝑎𝑎1,2 … 𝑎𝑎1,𝑑𝑑
𝑎𝑎2,1 𝑎𝑎2,2 … 𝑎𝑎2,𝑑𝑑
… … … …
𝑎𝑎𝑛𝑛,1 𝑎𝑎𝑛𝑛,2 … 𝑎𝑎𝑛𝑛,𝑑𝑑

� (17)

MPA combines two kinds of searching strategies, which are Brownian and Lévy, by dividing the
process of optimization into three phases, so it makes a balance between exploitation and exploration
[25].

In the first phase, the search agents (Preys) adopt the Brownian for exploration in case exploration
is more essential, as illustrated in equation (18) and equation (19). The execution of this phase is done
in the first third of iterations[25] .

𝑠𝑠𝑖𝑖 = 𝑟𝑟𝐵𝐵 ⊙ (𝐸𝐸𝑖𝑖 − 𝑟𝑟𝐵𝐵 ⊙ 𝑃𝑃𝑖𝑖) 𝑖𝑖 = 1, … .𝑛𝑛 (18)

𝑃𝑃𝑖𝑖 = 𝑃𝑃𝑖𝑖 + 𝑑𝑑 ⋅ 𝑅𝑅 ⊙ 𝑠𝑠𝑖𝑖 (19)

Such that si is the size of step for the preyi , R is a vector contains uniformly random numbers from 0
to 1 while d = 0.5, rB is Brownian movement represented as random vector, ⊙ represents element-wise
multiplication [25].

In the second phase, when both of exploitation and exploration have the equal degree of the importance
half of search agents (Prey) makes exploitation by using Lévy strategy as illustrated in equation (20),
and equation (21) [25].

𝑠𝑠𝑖𝑖 = 𝑟𝑟𝐿𝐿 ⊙ (𝐸𝐸𝑖𝑖 − 𝑟𝑟𝐿𝐿 ⊙ 𝑃𝑃𝑖𝑖) 𝑖𝑖 = 1, … . 𝑛𝑛
2

 (20)

𝑃𝑃𝑖𝑖 = 𝑃𝑃𝑖𝑖 + 𝑑𝑑 ⋅ 𝑅𝑅 ⊙ 𝑠𝑠𝑖𝑖 (21)

Such that rL represents Lévy strategy as random vector. And on the other side the other half (Predators)
makes exploration by using Brownian strategy as illustrated in equation (22), and equation (23) [25].

𝑠𝑠𝑖𝑖 = 𝑟𝑟𝑩𝑩 ⊙ (𝑟𝑟𝐵𝐵 ⊙𝐸𝐸𝑖𝑖 − 𝑃𝑃𝑖𝑖) 𝑖𝑖 = 𝑛𝑛
2

 … . .𝑛𝑛 (22)

𝑃𝑃𝑖𝑖 = 𝐸𝐸𝑖𝑖 + 𝑑𝑑 ⋅ 𝐴𝐴𝐴𝐴 ⊙ 𝑠𝑠𝑖𝑖 (23)

Such that AP is adaptive parameter which equal to (1 − 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
maxIter

)(2 ∗ 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)

In the third phase, the search agents (predators) make exploitation by using Lévy when exploitation
is more important, as illustrated in equation (24) and equation (25). In that way, the movements from
the exploration phase to the exploitation phase. Are done smoothly [25] .

𝑠𝑠𝑖𝑖 = 𝑟𝑟𝐿𝐿 ⊙ (𝑟𝑟𝐿𝐿 ⊙ 𝐸𝐸𝑖𝑖 − 𝑃𝑃𝑖𝑖) 𝑖𝑖 = 1, … … 𝑛𝑛 (24)

𝑃𝑃𝑖𝑖 = 𝐸𝐸𝑖𝑖 + 𝑑𝑑 ⋅ 𝐴𝐴𝐴𝐴 ⊙ 𝑠𝑠𝑖𝑖 (25)

MPA simulates the impact of Fish Aggregating Devices to prevent becoming stuck in a local optimum
(FADs). This effect causes search agents to make large jumps in other dimensions with a
specific probability, as illustrated in equation (26).

 𝑃𝑃𝑖𝑖 = �
𝑃𝑃𝑖𝑖 + 𝐴𝐴𝐴𝐴[𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑅𝑅 ⊙ (𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚)] ⊙𝐵𝐵 𝑖𝑖𝑖𝑖 𝑟𝑟 ≤ 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹

𝑃𝑃𝑖𝑖 + [𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 (1 − 𝑟𝑟) + 𝑟𝑟](𝑃𝑃𝑟𝑟1 − 𝑃𝑃𝑟𝑟2) 𝑖𝑖𝑖𝑖 𝑟𝑟 > 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹

 (26)

The FADs effect's probability is represented by the FADs parameter that equals .02. B is a binary array
that is built from another array R of the same length. R consists of real numbers between 0 to 1. If the
equivalent value in R is smaller than 0.2, the element in B equals 1, otherwise it equals 0. The random
indexes of the P matrix are represented by r1 and r2. Only newly created search agents with higher
fitness values than their corresponding agents in the current population are added to the new population.

 International Journal of Computers and Information 10-1 (2023) 18–35 25

The Elite matrix is updated if the solutions at the end of every iteration are better than the Elite
solutions.

According to our empirical, MPA requires four inputs the maximum number of iterations, the mean
value function of SRGM as an objective function with dataset of GNOME OSS, the number of
parameters in the objective function of SRGM, and lower and upper bounds for each parameter. After
executing MPA, it calculates the estimated parameters, and the evaluation metrics. The pseudocode of
MPA is presented as shown in Table 1.

Table 1. MPA pseudocode [31].

MPA pseudocode

1. Make initialization for first population using Equation 13.
2. While minimal than the max number of iterations

 3. Estimate each search agent.

 4. If 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 < 𝑀𝑀𝑀𝑀𝑀𝑀(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) / 3

 Update search agents using Brownian by Equation 16 and Equation 17.

 Else If 2 × 𝑀𝑀𝑀𝑀𝑀𝑀(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)/3 > 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 > 𝑀𝑀𝑀𝑀𝑀𝑀(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) / 3

 Half of the search agents are updated using Lévy by Equation 18 and Equation 19

 And for the other half is updated using Brownian by Equation 20 and Equation 21.

 Else If 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 > 2 × 𝑀𝑀𝑀𝑀𝑀𝑀(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)/3

 Update the search agents using Lévy by Equation 22 and Equation 23.

 End If.

 5. Search agents use a certain probability to take jumps by Equation 24.

 6. In the new population the new agents are added if and only if it is better than its past
 counterparts.

 7. Update Elite matrix.

 End While.

Although MPA is a recent metaheuristic algorithm, it is used in different research topics in the
literatures as in [31-34] because it is an effective heuristic algorithm that has a lot of advantages, such
as [35]: First, containing a restricted number of defined variables. Second, uncomplicated procedures.
Third, gradient-free nature. Fourth, flexibility.

4. Experimental Results and Discussion

This section contains the dataset used in the experiments, the used software and hardware,
assessment criteria, and practical results.

4.1. Datasets

We tested the performance of the chosen models using three versions of GNOME OSS projects as
shown in Table 2. Each version of dataset consists of two columns, one represents number of weeks
passed from releasing each version of GNOME projects and the second represents number of faults
detected in each week [36]. A GUI desktop for Unix systems is the primary objective of GNOME,
which has near to two million lines of code [37].

26 Islam S.Ramadan, Hany M. Harb, Hamdy M. Mousa, Mohamed G. Malhat

Table 2. The detected faults for official public releases of GNOME projects [36].

GNOME 2.0 GNOME 2.2 GNOME 2.4
Weeks from

release
Detected faults Weeks from

release
Detected faults Weeks from

release
Detected faults

1 6 1 5 1 4
2 5 2 4 2 5
3 3 3 5 3 2
4 2 4 5 4 7
5 5 5 9 5 3
6 5 6 5 6 1
7 8 7 2 7 3
8 4 8 1 8 4
9 8 9 2 9 3

10 3 10 3 10 5
11 2 11 2 11 1
12 1 13 1 12 3
13 6 15 4 15 2
14 8 16 1 18 1
15 6 17 1 19 1
16 2 18 1 20 5
17 2 22 1 21 2
18 1 24 2 23 1
19 1 46 1
20 1
21 1
22 2
24 3

4.2. Evaluation Criteria

We use three evaluation criteria for the chosen models which are Mean Square Error (MSE), Sum
of Square Error (SSE), and Reliability [38,39]. These criteria determine the efficiency of the selected
models’ fitting results[23].

4.2.1. SSE is evaluated using the equation [38]:

𝑆𝑆𝑆𝑆𝑆𝑆 = ∑ �𝑀𝑀𝑗𝑗 −𝑀𝑀�𝑡𝑡𝑗𝑗��𝑘𝑘
𝑗𝑗=1

2
 (27)

Such that Mj denotes the total number of faults that detected at time tj according to the actual
data, and M(tj) denotes the total number of faults that estimated at time tj.

4.2.2. MSE is evaluated using the equation [38]:

𝑀𝑀𝑀𝑀𝑀𝑀 =
∑ �𝑀𝑀𝑗𝑗−𝑀𝑀�𝑡𝑡𝑗𝑗��
𝑘𝑘
𝑗𝑗=1

2

𝑘𝑘−𝑝𝑝
 (28)

Such that both of Mj , and M(tj) as mentioned in the equation of SSE, p represents number of the
model’s parameters and k represents sample size of faults.

4.2.3. Reliability is evaluated for OSS using the equation [39]:

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑅𝑅𝑖𝑖 = 𝑀𝑀𝑖𝑖(𝑡𝑡)
𝑎𝑎𝑖𝑖

 (29)

Such that Ri denotes the reliability for i release, Mj denotes the model’s mean value function, and
ai denotes the initial faults in the software.

MPA estimates the mean value functions' parameters for each model. According to this estimation,
we can evaluate the predictive efficiency of the models such that, if we compare two models, the
perfect model has a small value for SEE and MSE than the other model [23].

 International Journal of Computers and Information 10-1 (2023) 18–35 27

4.3. Results and Analysis

4.3.1. The evaluation of the mean value functions’ parameters

As mentioned before, the predictive ability of SRGMs mainly depends on their parameters, and

according to Equation (29), the parameters’ values are needed to estimate the reliability. MPA
evaluates these parameters for each model for all datasets as shown in Table 3, Table 4, and Table 5.
The shared parameters between all models are the initial faults in the software and removal rate for
faults, so these parameters have the most effect on estimation reliability [40].

Table 3. The estimated values of parameters for all SRGMs based on GNOME dataset version 2.0.

Model a b 𝑁𝑁′ p q 𝛼𝛼 c
SRGM-1 90.3375 0.08 50 0.0105 0.1313 - -
SRGM-2 83.8828 0.5 38 0.0024 0.1100 0.0015 -
SRGM-3 84.1911 0.9 15 0.00347 0.11300 0.003 -
SRGM-4 83.7277 0.1898 74.999 0.0033 0.11104 0.01614 -
SRGM-5 88.26089 0.75309 61.62822 0.001133 0.10885 0.00535 81.9236
SRGM-6 92.4120 0.0550 - - - - -

Table 4. The estimated values of parameters for all SRGMs based on GNOME dataset version 2.2.

Model a b 𝑁𝑁′ p q 𝛼𝛼 c
SRGM-1 92.4276 0.009 95 0.0701 0.1314 - -
SRGM-2 70.5326 0.07822 18.6016 0.05508 0.1351 0.00051 -
SRGM-3 50 1.7176 63.782 0.00816 0.0754 0.01935 -
SRGM-4 52.0865 0.03078 69.7414 0.0500 0.13513 0.2018 -
SRGM-5 75.85257 14.29899 2.31148 0.00285 0.37015 0.11504 36.0690
SRGM-6 50.7519 0.1019 - - - - -

Table 5. The estimated values of parameters for all SRGMs based on GNOME dataset version 2.4.

Model a b 𝑁𝑁′ p q 𝛼𝛼 c
SRGM-1 93.6802 0.009 95 0.0513 0.1 - -
SRGM-2 69.9365 0.1155 12.4396 0.04348 0.09 0.0039 -
SRGM-3 62.9181 0.27051 6.4774 0.04123 0.09435 0.01886 -
SRGM-4 73.4746 0.0280 46.6601 0.0457 0.08841 0.0539 -
SRGM-5 75 1.51812 7.6531 0.009 0.180416 0.04563 35.3531
SRGM-6 51.2273 00.0762 - - - - -

4.3.2. The fitting results for three versions of GNOME dataset

There are three evaluation metrics to estimate the predictive efficiency of the implemented models

as shown in Table 6, Table 7, and Table 8. Each table has the fitting results for the distinct GNOME
dataset version.

According to Table 6, and Fig. 2, which represent the evaluation metrics for SRGMs based on
GNOME 2.0, SRGM-5 has the smallest value for SSE, and this means that this model has the most
predictive execution than the remaining models because the predicted values by this model are the
most in line with the actual values. According to that, SRGM-5 is the best model to assess reliability
accurately. This model is based on the methodology of imperfect debugging. This methodology
supposes that, in the debugging operation, there is a possibility for at least introducing only one new
fault. On the other hand, SRGM-6 has the highest value for SSE, so this model has less predictive
execution than the remaining models because the predicted values by this model are different from the
actual values. According to that, SRGM-6 is the worst model to assess reliability. This model is based

28 Islam S.Ramadan, Hany M. Harb, Hamdy M. Mousa, Mohamed G. Malhat

on the methodology of Gompertz distribution. This methodology allows either increasing or decreasing
the rates of failures based on the shape parameters.

Table 6. The fitting results for all SRGMs based on GNOME dataset version 2.0.

Model SSE MSE Reliability
SRGM-1 99.5532 5.5307 0.9348
SRGM-2 95.8630 5.6390 0.9852
SRGM-3 96.2211 5.6600 0.99660
SRGM-4 96.1235 5.65451 1.0002
SRGM-5 95.34044 5.95666 0.9557
SRGM-6 155.7741 7.4178 0.9356

Fig. 2. The fitting bar chart's results for all SRGMs based on GNOME dataset version 2.0.

 International Journal of Computers and Information 10-1 (2023) 18–35 29

According to Table 7, and Fig. 3, which represent the evaluation metrics for SRGMs based on
GNOME 2.2, SRGM-5 has the smallest value for SSE, and this means that this model has the most
predictive execution than the remaining models because the predicted values by this model are the
most in line with the actual values. According to that, SRGM-5 is the best model to assess reliability
accurately. This model is based on the methodology of imperfect debugging. This methodology
supposes that, in the debugging operation, there is a possibility for at least introducing only one new
fault. And on the other hand, SRGM-6 has the highest value for SSE, so this model has less predictive
execution than the remaining models because the predicted values by this model are different from the
actual values. According to that, SRGM-6 is the worst model to assess reliability. This model is based
on the methodology of Gompertz distribution. This methodology allows either increasing or decreasing
the rates of failures based on the shape parameters.

Table 7. The fitting results for all SRGMs based on GNOME dataset version 2.2.

Model SSE MSE Reliability
SRGM-1 45.0693 3.4668 0.5665
SRGM-2 44.66213 3.7222 0.7526
SRGM-3 47.5781 3.9999 1.59206
SRGM-4 44.60919 3.7174 1.0100
SRGM-5 15.5150 1.41046 0.6994
SRGM-6 70.1503 4.3843 0.999973

Fig. 3. The fitting bar chart's results for all SRGMs based on GNOME dataset version 2.2.

30 Islam S.Ramadan, Hany M. Harb, Hamdy M. Mousa, Mohamed G. Malhat

According to Table 8, and Fig. 4, which represent the evaluation metrics for SRGMs based on

GNOME 2.4, SRGM-5 has the smallest value for SSE, and this means that this model has the most
predictive execution than the remaining models because the predicted values by this model are the
most in line with the actual values. According to that, SRGM-5 is the best model to assess reliability
accurately. This model is based on the methodology of imperfect debugging. This methodology
supposes that, in the debugging operation, there is a possibility for at least introducing only one new
fault. And on the other hand, SRGM-6 has the highest value for SSE, so this model has less predictive
execution than the remaining models because the predicted values by this model are different from the
actual values. According to that, SRGM-6 is the worst model to assess reliability. This model is based
on the methodology of Gompertz distribution. This methodology allows either increasing or decreasing
the rates of failures based on the shape parameters.

Table 8. The fitting results for all SRGMs based on GNOME dataset version 2.4.

Model SSE MSE Reliability
SRGM-1 55.8126 3.9866 0.5737
SRGM-2 54.7943 4.2149 0.7516
SRGM-3 54.7460 4.2114 0.8915
SRGM-4 54.8054 4.21581 0.7475
SRGM-5 53.1495 4.42913 0.744271
SRGM-6 79.2473 4.6616 0.9999

Fig. 4. The fitting bar chart's results for all SRGMs based on GNOME dataset version 2.4.

 International Journal of Computers and Information 10-1 (2023) 18–35 31

Fig. 5, Fig. 6, and Fig. 7 show a relation between the time in weeks as the x-axis and the faults as
the y-axis. Fig. 5 determines the fitting results for the first version of the dataset GNOME 2.0, Fig. 6
determines the fitting results for the second version of the dataset GNOME 2.2, and Fig. 7 determines
the fitting results for the third version of the dataset GNOME 2.4.

Fig. 5. The fitting curves for SRGMs based on GNOME dataset version 2.0.

32 Islam S.Ramadan, Hany M. Harb, Hamdy M. Mousa, Mohamed G. Malhat

Fig. 6. The fitting curves for SRGMs based on GNOME dataset version 2.2.

 International Journal of Computers and Information 10-1 (2023) 18–35 33

Fig. 7. The fitting curves for SRGMs based on GNOME dataset version 2.4.

34 Islam S.Ramadan, Hany M. Harb, Hamdy M. Mousa, Mohamed G. Malhat

It's known that we can detect more faults over time, so the figures show the positive relationship

between the time and the number of faults. The previous fitting figures show how much MPA estimates
the SRGMs’ parameters to be the estimated values more in line with the actual values of GNOME
dataset. There are three steps for estimating parameters as follows: First, MPA calculates the SRGM's
parameters according to the upper and the lower bounds for each parameter. Second, SRGM's mean
value function calculates the estimated values by making substitution with the estimated parameters.
Third, SRGM's mean value function calculates the evaluation metrics based on the actual and estimated
values. The previous steps are repeated according to the specified numbers of iterations for MPA until
estimates the maximum optimal value for SSE and MSE.

5. Conclusion

In our research, we assess the reliability of open-source software (GNOME) by six models from
the probabilistic category based on three different methodologies. We apply MPA to estimate the
parameters of the mean value function for the selected models to assess the reliability accurately using
these estimated parameters. We used SSE, MSE, and reliability as evaluation metrics to test the
performance of the selected models. SRGM-5 estimates the models' parameters with the minimum
degree of errors, so SRGM-5 calculates the most accurate reliability value for all GNOME dataset
versions. And on the other hand, SRGM-6 estimates the worst reliability value for all GNOME dataset
versions. We can conclude that the best model for assessment reliability is SRGM-5 when using
GNOME dataset. In the future, we will assess CSS reliability using probabilistic models and
metaheuristic algorithms.

References

 [1] T. Saravanan, S. Jha, G. Sabharwal and S. Narayan, "Comparative Analysis of Software Life Cycle Models," 2020 2nd International
 Conference on Advances in Computing, Communication Control and Networking (ICACCCN), pp. 906-909,2020.
 [2] S. Shukla, R.K.Behera, S. Misra, S.K.Rath,” Software reliability assessment using deep learning technique,” in Towards Extensible
 and Adaptable Methods in Computing, pp.57-68, 2018.
 [3] D. Raval, D. Bhatt, M. K. Kumhar, V. Parikh, and D. Vyas, “Medical Diagnosis System Using Machine Learning,” International
 Journal of Computer Science & Communication, vol. 7, pp. 177–182, 2015.
 [4] R. M. A. Wadi and L. S. Khalf, "Knowledge Management in Higher Education Institutions: Facts and Challenges," in European,
 Asian,Middle Eastern, North African Conference on Management \& Information Systems, pp.241-248, 2021.
 [5] S.Randhawa, "Open source software and libraries," Twenty First Century Publications, 2008.
 [6] N. Medrous and K. Nemmiche, “Towards a new form of free merchandising with Open Source Software,” Journal of Business and
 Trade Economics, 2021.
 [7] K. Ilievski, A. Behlić, and J. Achkoski, “E-learning platforms: The future of education,” 2-nd International Scientific Conference
 MILCON'19,Skopje., pp. 62-67, 2019.
 [8] O. Y. Aydin and Y. Aydın, “Security of Open Source Software,” Accessed: May. 30,2022 [Online], April 2018. Available:
 https://tinyurl.com/y5epm7yc.
 [9] A. K. Ray and D. B. Ramesh, “Open Source Software (OSS) for Management of Library and Information Services: An Overview,”
 International Journal of Library and Information Studies, vol. 7, no. 2, pp. 20–31, 2017.
 [10]RiskSense, “The Dark Reality of Open Source,”Accessed May. 30,2022, [Online], May 2020. Available:
 https://tinyurl.com/bdhnf9y8
 [11] F. Kluitenberg, “Evaluating Quality of Open Source Components,” MSc dissertation, Twente Univ., 2018.
 [12] A. Alami, Y. Dittrich, and A. Wsowski, “Influencers of quality assurance in an open source community,” Proc. - Int. Conf. Softw.
 Eng., pp. 61–68, 2018.
 [13] A. Al Hussein, “An Object-Oriented Software Metric Tool to Evaluate The Quality of Open Source Software,” IJCSNS International
 Journal of Computer Science and Network Security, vol. 17, no. 4, pp. 345–351, 2017.
 [14] W. Agustiono, “An Open Source Software Quality Model and Its Applicability for Assessing E-commerce Content Management
 Systems,” in International Conference on Science and Technology (ICST 2018), vol. 1, pp. 699–704, 2018.
 [15] L. V. Utkin and F. P. A. Coolen, “A robust weighted SVR-based software reliability growth model,” Reliability Engineering \&
 System Safety, vol. 176, no. April, pp. 93–101, 2018.

https://tinyurl.com/y5epm7yc
https://tinyurl.com/bdhnf9y8

 International Journal of Computers and Information 10-1 (2023) 18–35 35

 [16] K. Sahu and R. K. Srivastava, “Needs and importance of reliability prediction: An industrial perspective,” Information Sciences
 Letters, vol. 9, no. 1, pp. 33–37, 2020.
 [17] P. Kumar, L. K. Singh, and C. Kumar, “Suitability analysis of software reliability models for its applicability on NPP systems,”
 Quality and Reliability Engineering International, vol. 34, no. 8, pp. 1491–1509, 2018.
 [18] A. A. Musa, S. H. Imam, A. Choudhary, and A. P. Agrawal, “Parameter estimation of software reliability growth models: A
 comparison between grey Wolf optimizer and improved grey Wolf optimizer,” in 2021 11th International Conference on Cloud
 Computing, Data Science \& Engineering (Confluence), pp. 611–617, 2021.
 [19] A. Choudhary, A. S. Baghel, and O. P. Sangwan, “Efficient parameter estimation of software reliability growth models using
 harmony search,” IET Software, vol. 11, no. 6, pp. 286–291, 2017.
 [20] N. Gandhi, N. Gondwal, and A. Tandon, “Reliability Modeling of OSS Systems based on Innovation-Diffusion Theory and Imperfect
 Debugging,” in ICITKM, vol. 14, pp. 53–58, 2018.
 [21] M. Zhu and H. Pham, “A multi-release software reliability modeling for open source software incorporating dependent fault
 detection process,” Annals of Operations Research, vol. 269, no. 1, pp. 773–790, 2018.
 [22] Diwakar and A. G. Aggarwal, “Multi Release Reliability Growth Modeling for Open Source Software Under Imperfect Debugging,”
 in System Performance and Management Analytics, pp. 77–86, 2019.
 [23] J. Wang, “Model of Open Source Software Reliability with Fault Introduction Obeying the Generalized Pareto Distribution,”
 Arabian Journal for Science and Engineering, vol. 46, no. 4, pp. 3981–4000, 2021.
 [24] T. Yaghoobi, “Selection of optimal software reliability growth model using a diversity index,” Soft Computing, vol. 25, no. 7, pp.
 5339–5353, 2021.
 [25] A. Faramarzi, M. Heidarinejad, S. Mirjalili, and A. H. Gandomi, “Marine Predators Algorithm: A nature-inspired metaheuristic,”
 Expert systems with applications, vol. 152, p. 113377, 2020.
 [26] C.S.Chowdary, R.S.Prasad, K.Sobhana,” Burr type III software reliability growth model,” IOSR Journal of Computer
 Engineering, vol.1, no.17, pp.49-54,2015.
 [27] A. Chaudhary, A. P. Agarwal, A. Rana, and V. Kumar, “Crow Search Optimization Based Approach for Parameter Estimation of
 SRGMs,” in 2019 Amity International Conference on Artificial Intelligence (AICAI), pp. 583–587, 2019.
 [28] GNOME OSS dataset. Accessed: May. 30,2022 [Online]. Available: https://gitlab.gnome.org/GNOME
 [29] JUDDI OSS dataset. Accessed: May. 30,2022 [Online]. Available: https://juddi.apache.org/
 [30] Apache OSS dataset. Accessed: May. 30,2022 [Online]. Available: https://issues.apache.org/
 [31] M. Ghoneimy, H. A. Hassan, and E. Nabil, “A New Hybrid Clustering Method of Binary Differential Evolution and Marine
 Predators Algorithm for Multi-omics Datasets,” International Journal of Intelligent Engineering and Systems, vol. 14, no. 2, pp.
 421–431, 2021.
 [32] A. Eid, S. Kamel, and L. Abualigah, “Marine predators algorithm for optimal allocation of active and reactive power resources in
 distribution networks,” Neural Computing and Applications, vol. 33, no. 21, pp. 14327–14355, 2021.
 [33] J. Yang, M. Zheng, and S. Chen, “Illumination correction with optimized kernel extreme learning machine based on
 marine predators algorithm,” Color Research \& Application, vol. 47, no. 3, pp. 630–643, 2022.
 [34] X. Lu, Y. A. Nanehkaran, and M. Karimi Fard, “A Method for Optimal Detection of Lung Cancer Based on Deep Learning
 Optimized by Marine Predators Algorithm,” Computational Intelligence and Neuroscience, vol. 2021, 2021.
 [35] A. H. Yakout, W. Sabry, A. Y. Abdelaziz, H. M. Hasanien, K. M. AboRas, and H. Kotb, “Enhancement of frequency stability of
 power systems integrated with wind energy using marine predator algorithm based PIDA controlled STATCOM,” Alexandria
 Engineering Journal, vol. 61, no. 8, pp. 5851–5867, 2022.
 [36] X. Li, Y. F. Li, M. Xie, and S. H. Ng, “Reliability analysis and optimal version-updating for open source software,” Information
 and Software Technology, vol. 53, no. 9, pp. 929–936, 2011.
 [37] D. M. German, “The GNOME Project: A case study of open source, global software development,” Software Process:
 Improvement and Practice, vol. 8, no. 4, pp. 201–215, 2003.
 [38] K. Sharma, R. Garg, C. K. Nagpal, and R. K. Garg, “Selection of Optimal Software Reliability Growth Models Using a Distance
 Based Approach,” IEEE Transactions on Reliability, vol. 59, no. 2, pp. 266–276, 2010.
 [39] B. Pachauri, A. Kumar, and J. Dhar, “Reliability analysis of open source software systems considering the effect of previously
 released version,” International Journal of Computers and Applications,2019.
 [40] C. Y. Huang, J. H. Lo, and S. Y. Kuo, “Pragmatic study of parametric decomposition models for estimating software reliability
 growth,”in Proceedings Ninth International Symposium on Software Reliability Engineering (Cat. No. 98TB100257), pp. 111–
 123, 1998.

https://gitlab.gnome.org/GNOME
https://juddi.apache.org/
https://issues.apache.org/

	[1] T. Saravanan, S. Jha, G. Sabharwal and S. Narayan, "Comparative Analysis of Software Life Cycle Models," 2020 2nd International Conference on Advances in Computing, Communication Control and Networking (ICACCCN), pp. 906-909,2020.
	[2] S. Shukla, R.K.Behera, S. Misra, S.K.Rath,” Software reliability assessment using deep learning technique,” in Towards Extensible and Adaptable Methods in Computing, pp.57-68, 2018.
	[3] D. Raval, D. Bhatt, M. K. Kumhar, V. Parikh, and D. Vyas, “Medical Diagnosis System Using Machine Learning,” International Journal of Computer Science & Communication, vol. 7, pp. 177–182, 2015.
	[4] R. M. A. Wadi and L. S. Khalf, "Knowledge Management in Higher Education Institutions: Facts and Challenges," in European, Asian,Middle Eastern, North African Conference on Management \& Information Systems, pp.241-248, 2021.
	[5] S.Randhawa, "Open source software and libraries," Twenty First Century Publications, 2008.
	[6] N. Medrous and K. Nemmiche, “Towards a new form of free merchandising with Open Source Software,” Journal of Business and Trade Economics, 2021.
	[7] K. Ilievski, A. Behlić, and J. Achkoski, “E-learning platforms: The future of education,” 2-nd International Scientific Conference MILCON'19,Skopje., pp. 62-67, 2019.
	[8] O. Y. Aydin and Y. Aydın, “Security of Open Source Software,” Accessed: May. 30,2022 [Online], April 2018. Available: https://tinyurl.com/y5epm7yc.
	[9] A. K. Ray and D. B. Ramesh, “Open Source Software (OSS) for Management of Library and Information Services: An Overview,” International Journal of Library and Information Studies, vol. 7, no. 2, pp. 20–31, 2017.
	[10]RiskSense, “The Dark Reality of Open Source,”Accessed May. 30,2022, [Online], May 2020. Available: https://tinyurl.com/bdhnf9y8
	[11] F. Kluitenberg, “Evaluating Quality of Open Source Components,” MSc dissertation, Twente Univ., 2018.
	[12] A. Alami, Y. Dittrich, and A. Wsowski, “Influencers of quality assurance in an open source community,” Proc. - Int. Conf. Softw. Eng., pp. 61–68, 2018.
	[13] A. Al Hussein, “An Object-Oriented Software Metric Tool to Evaluate The Quality of Open Source Software,” IJCSNS International Journal of Computer Science and Network Security, vol. 17, no. 4, pp. 345–351, 2017.
	[14] W. Agustiono, “An Open Source Software Quality Model and Its Applicability for Assessing E-commerce Content Management Systems,” in International Conference on Science and Technology (ICST 2018), vol. 1, pp. 699–704, 2018.
	[15] L. V. Utkin and F. P. A. Coolen, “A robust weighted SVR-based software reliability growth model,” Reliability Engineering \& System Safety, vol. 176, no. April, pp. 93–101, 2018.
	[16] K. Sahu and R. K. Srivastava, “Needs and importance of reliability prediction: An industrial perspective,” Information Sciences Letters, vol. 9, no. 1, pp. 33–37, 2020.
	[17] P. Kumar, L. K. Singh, and C. Kumar, “Suitability analysis of software reliability models for its applicability on NPP systems,” Quality and Reliability Engineering International, vol. 34, no. 8, pp. 1491–1509, 2018.
	[18] A. A. Musa, S. H. Imam, A. Choudhary, and A. P. Agrawal, “Parameter estimation of software reliability growth models: A comparison between grey Wolf optimizer and improved grey Wolf optimizer,” in 2021 11th International Conferen...
	[19] A. Choudhary, A. S. Baghel, and O. P. Sangwan, “Efficient parameter estimation of software reliability growth models using harmony search,” IET Software, vol. 11, no. 6, pp. 286–291, 2017.
	[20] N. Gandhi, N. Gondwal, and A. Tandon, “Reliability Modeling of OSS Systems based on Innovation-Diffusion Theory and Imperfect Debugging,” in ICITKM, vol. 14, pp. 53–58, 2018.
	[21] M. Zhu and H. Pham, “A multi-release software reliability modeling for open source software incorporating dependent fault detection process,” Annals of Operations Research, vol. 269, no. 1, pp. 773–790, 2018.
	[22] Diwakar and A. G. Aggarwal, “Multi Release Reliability Growth Modeling for Open Source Software Under Imperfect Debugging,” in System Performance and Management Analytics, pp. 77–86, 2019.
	[23] J. Wang, “Model of Open Source Software Reliability with Fault Introduction Obeying the Generalized Pareto Distribution,” Arabian Journal for Science and Engineering, vol. 46, no. 4, pp. 3981–4000, 2021.
	[24] T. Yaghoobi, “Selection of optimal software reliability growth model using a diversity index,” Soft Computing, vol. 25, no. 7, pp. 5339–5353, 2021.
	[25] A. Faramarzi, M. Heidarinejad, S. Mirjalili, and A. H. Gandomi, “Marine Predators Algorithm: A nature-inspired metaheuristic,” Expert systems with applications, vol. 152, p. 113377, 2020.
	[26] C.S.Chowdary, R.S.Prasad, K.Sobhana,” Burr type III software reliability growth model,” IOSR Journal of Computer Engineering, vol.1, no.17, pp.49-54,2015.
	[27] A. Chaudhary, A. P. Agarwal, A. Rana, and V. Kumar, “Crow Search Optimization Based Approach for Parameter Estimation of SRGMs,” in 2019 Amity International Conference on Artificial Intelligence (AICAI), pp. 583–587, 2019.
	[28] GNOME OSS dataset. Accessed: May. 30,2022 [Online]. Available: https://gitlab.gnome.org/GNOME
	[29] JUDDI OSS dataset. Accessed: May. 30,2022 [Online]. Available: https://juddi.apache.org/
	[30] Apache OSS dataset. Accessed: May. 30,2022 [Online]. Available: https://issues.apache.org/
	[31] M. Ghoneimy, H. A. Hassan, and E. Nabil, “A New Hybrid Clustering Method of Binary Differential Evolution and Marine Predators Algorithm for Multi-omics Datasets,” International Journal of Intelligent Engineering and Systems...
	[32] A. Eid, S. Kamel, and L. Abualigah, “Marine predators algorithm for optimal allocation of active and reactive power resources in distribution networks,” Neural Computing and Applications, vol. 33, no. 21, pp. 14327–14355, 2021.
	[33] J. Yang, M. Zheng, and S. Chen, “Illumination correction with optimized kernel extreme learning machine based on marine predators algorithm,” Color Research \& Application, vol. 47, no. 3, pp. 630–643, 2022.
	[34] X. Lu, Y. A. Nanehkaran, and M. Karimi Fard, “A Method for Optimal Detection of Lung Cancer Based on Deep Learning Optimized by Marine Predators Algorithm,” Computational Intelligence and Neuroscience, vol. 2021, 2021.
	[35] A. H. Yakout, W. Sabry, A. Y. Abdelaziz, H. M. Hasanien, K. M. AboRas, and H. Kotb, “Enhancement of frequency stability of power systems integrated with wind energy using marine predator algorithm based PIDA controlled STATCO...
	[36] X. Li, Y. F. Li, M. Xie, and S. H. Ng, “Reliability analysis and optimal version-updating for open source software,” Information and Software Technology, vol. 53, no. 9, pp. 929–936, 2011.
	[37] D. M. German, “The GNOME Project: A case study of open source, global software development,” Software Process: Improvement and Practice, vol. 8, no. 4, pp. 201–215, 2003.
	[38] K. Sharma, R. Garg, C. K. Nagpal, and R. K. Garg, “Selection of Optimal Software Reliability Growth Models Using a Distance Based Approach,” IEEE Transactions on Reliability, vol. 59, no. 2, pp. 266–276, 2010.
	[39] B. Pachauri, A. Kumar, and J. Dhar, “Reliability analysis of open source software systems considering the effect of previously released version,” International Journal of Computers and Applications,2019.
	[40] C. Y. Huang, J. H. Lo, and S. Y. Kuo, “Pragmatic study of parametric decomposition models for estimating software reliability growth,”in Proceedings Ninth International Symposium on Software Reliability Engineering (Cat. No....

