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Abstract— Different applications used cloud computing, 
machine learning, and the Internet of Things (IoT). 
Transferring data from the local network to the cloud for 
processing causes huge traffic and delay. IoT services, like 
Human Activity Recognition (HAR), use IoT edge options to be 
near the place of telemetry data generation that decreases traffic 
and speeds up the results. This study used three smartphones 
with built-in accelerometers; three parameters from each 
accelerometer to predict human activities. While building the 
models at the Raspberry PI edge, the most important features 
were determined using Principal Component Analysis (PCA).  
Light GBM, Extra Trees, and Random Forest algorithms were 
employed to evaluate the best models. Significant performance 
improvements in training and real-time results were achieved 
using the top related features at the IoT edge. The Light GBM 
recognized four different activities with 99.6% accuracy when 
all nine features were used, and with more than 98% accuracy 
when less than half of the features were used. To process one 
prediction, Raspberry PI 3 took 6.1 milliseconds, Raspberry PI 
4 took less than 3 milliseconds if all features are used, while 
Microsoft Azure cloud took 5.8 seconds, including prediction 
time and network latency.  

Keywords— Internet of Things, IoT Edge, Raspberry PI, Human 
Activity Recognition, Feature Selection, Machine Learning. 

I. INTRODUCTION  
Internet of Things (IoT) provides a framework that enables 

devices to connect to the Internet and collect information 
about their environments. IoT and Machine Learning  (ML)  
are used in smart systems such as smart healthcare, smart 
energy management, smart cities, and smart machines [4, 10].  

Human Activity Recognition (HAR) using smartphones is 
a popular and cost-effective approach, used to automatically 
identifying and classifying human activities. Smartphones 
have sensors like inertial measurement unit (IMU) that 
contains magnetometers, accelerometers, and gyroscopes. 
These sensors can be used to gather data about human 
activities [6, 8].  

HAR using smartphones can be used in  healthcare where 
it can be employed for monitoring and predicting health-
related behaviors such as physical activities, sleep, and 
medication adherence [24, 26-30]. Fitness tracking and 
monitoring physical activity levels are also applications of 
HAR; this can be useful for individuals who want to improve 
their fitness and overall health. In sports and performance 
tracking, HAR can be used to track and analyze sports 
performance, including running, cycling, and swimming. This 
can help athletes to track their progress, set goals, and improve 
their performance [18 ,32].  Overall, HAR using smartphones 
has the potential to provide valuable insights into human 
behavior and can be used in a variety of smart applications 
[16, 32-35, 38-40].  

In cloud computing systems, where there are plenty of 
resources, machine learning can be used to process data using 
processing power, storage, and memory as needed. However, 
network delay from the local environment to the servers and 
responses back increases the volume of data and adds latency 
in applications that consume a lot of traffic [4, 10-12].  

In order to stay up with application needs, machine 
learning needs to move from being managed in the cloud to 
being handled closer to end user devices at the IoT edge. 
Smart systems apply IoT edge devices to offload work from 
the cloud to the IoT edge, where requests are handled close to 
the environment [36-37].  

In this paper, two versions of Raspberry PI micro-
computers were used as edge devices to speed up response 
time while maintaining accuracy. Depending on the 
significance of each feature, a different number of features 
was employed. Nine values were used, and the accuracy was 
99.6% across all three smartphones. By reducing the number 
of features and exploiting the IoT edge, prediction time was 
significantly improved without having noticeable effects on 
accuracy. Accuracy was 94% in real-time testing and 99% 
during training with only five features. 

The related articles review and datasets are covered in the 
next sections. Following an explanation of the methodology 
and experiments, the findings will be examined and 
contrasted, and finally, comparisons and conclusions will be 
presented. 

II. LITERATURE REVIEW 

Smartphones were utilized in [1, 5, 7, 17], the authors of 
these articles suggested HAR systems using deep learning and 
data from smartphone sensors to detect human body motion. 
In these studies, machine learning was used to train over data 
from smartphone inertial sensors to distinguish a range of 
behaviors, including standing, running, walking, leaping, and 
sleeping, as well as actions that take place in between distinct 
activities. The findings demonstrate that human behaviors can 
be consistently identified.  

A cloud-based method for detecting falls in older persons 
was employed in [11], and the data was transferred there to be 
categorized and utilized to develop a profile of the person 
being tracked. On the basis of data collected and processed by 
the smartphone's accelerometer and gyroscope, fall detection 
was implemented on smartphones. Wearable sensor data was 
handled by authors in [9, 14, 20-21, 31, 41] to carry out 
classification. They utilized the derived patterns over a variety 
of time scales using additional hardware like microcontrollers 
and various classification algorithms to differentiate between 
activities. 
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Authors in the field of internet-based healthcare presented 
a three-dimensional inertia signal with thirteen time-stamped 
human movements, including walking, walking upstairs, 
walking downstairs, writing, smoking, and other activities [8], 
the HAR model was provided using the Random Forest 
classifier and effective handcrafted features. A new machine 
learning (ML) approach for HAR systems was proposed by 
researchers in [17], which entails data gathering, data cleaning, 
feature extraction, feature engineering, and modeling with 
classification algorithms for forecasting human activities. 
They compared the performance of traditional ML algorithms 
and tree-based boosting techniques while using motion sensors 
to detect human movements. 

In [5], researchers proposed a two-level scheme for 
recognition of human physical activities and the corresponding 
contexts based on the smartphone accelerometer data. The 
suggested method consists of four steps that are based on 
accelerometer data: data pre-processing, feature analysis, 
activity detection, and context classification. Cooking, and in 
a meeting are examples of context recognition. Other articles 
related to HAR contexts recognition are discussed in [26-28]. 

According to the earlier articles, embedded sensors in 
smartphones and wearable sensors are frequently utilized in 
machine learning, and they are being used to identify many 
types of daily activities. While some recent research 
publications did focus on real-time experiments, the majority 
of them concentrated on increasing recognition accuracy and 
updating algorithms to enhance processing speed. Some 
articles used edge computing, but the speed and accuracy were 
not equivalent as in this work. Table 10 at the end of the results 
section compares the outcomes of this proposal and the 
outcomes of some recent related articles. 

This paper used two versions of Raspberry PI IoT edge, 
to enhance the performance of HAR using several models, 
Microsoft Azure cloud infrastructure and three smartphones 
were used. Utilizing the built-in accelerometer of three 
smartphones, HAR used the features created from the 
accelerometer readings. Depending on the relative importance 
of each value, various feature datasets were used. In addition 
to the cloud, numerous tests were created and conducted at the 
IoT edge close to mobile devices. At IoT edge, processing 
speed for several models were measured. We discovered that 
combining the IoT edge with the high impact features would 
greatly increase prediction speed without affecting accuracy. 

III. DATASET AND METHODOLOGY  

A. Dataset and configurations 

The basic dataset used in this work is based on a dataset 
created by the German university of Manheim's Data and Web 
Science group (DWS) [19]; they captured movements on 
smartphones for numerous people using various sensors, such 
as the accelerometer, the gyroscope, and others. The exercises 
include walking, running, jumping, lying, standing, and going 
up and down stairs. They used seven smartphones, one on each 
of their heads, chests, forearms, waists, shins, thighs, and 
upper arms. Here, each smartphone has an accelerometer, 
which generates three values (x, y, and z) as illustrated in 
Figure 1. Smartphone’s orientation will make accelerometer 
produce different values when the body is moving [1,6]. 

Using just three smartphones, we were able to extract a 
subset of the dataset to identify four activities. Running, 
standing, sitting, and walking are the chosen categories among 
other categories. The locations of smartphones are shown in 
Figure 2. Keep in mind that the smartphone on the waist is 
horizontal, which changes how the x and y coordinates of the 
accelerometer are affected. 

.  

 
(a) 

 
(b) 

Figure 1: smartphone accelerometer [6] 

Figure 2 depicts the distribution of the three places that 
were chosen to cover the categories that we are targeting. The 
waist movement is essential for the selected categories, and the 
head and chest were not chosen because they are mostly stable 
in the selected movements. Some locations also cover other 
locations, such as the upper arm substituting the forearm and 
the shin substituting the thigh. Therefore, there were only three 
smartphones instead of seven. The accelerometer sensor, 
which was selected in accordance with the four categories, has 
a greater impact on detecting the specified activities than the 
gyroscope and other sensors. However, if fall detection is 
required, for instance, a gyroscope will be essential to detect 
rotation while falling. 

 
Figure 2: Three smartphones and Raspberry PI as an IoT Edge 

Popular algorithms in smart systems include Extra Trees, 
Random Forest, and Light Gradient-Boosting Machine (Light 
GBM) [10]. Light GBM and Extra Trees are both widely used 
machine learning algorithms for classification tasks including 
HAR [14, 23, 39]. The Random Forest ensemble learning 
approach combines different decision trees to improve the 
accuracy and dependability of HAR models [27]. Light GBM 
is faster than Extra Trees and Random Forest due to its use of 
gradient-based boosting and histogram-based binning. This 
makes it well-suited for large datasets and real-time 
applications. These algorithms were used and compared in 
this paper in terms of accuracy and prediction speed. 

A sample of a dataset with nine features and one 
projected activity is shown in Table 1. Starting with the 
smartphone's accelerometer on the arm provided the first 
three columns arm(x,y,z); the other six columns came from 
the smartphones located on the waist and the shin. The dataset 
contains 120000 entries, 30000 for each recorded category. 



 International Journal for Computers and Information, IJCI, Vol. 10 - 3, Oct. 2023 (Special Issue) 

 
 Proceedings of 2nd International Conference on Computers and Information, ICCI 2023                                                         3 
 

In this work, Light GBM produced the highest accuracy 
and the fastest processing speed. In some experiments, we 
used Light GBM to compare the performance of models with 
different number of features on Raspberry PI micro-
computer.  

 B. Methodology and Experiments 

This section describes the methodology from datasets 
extraction, features importance and selection, training and 
accuracy measurements, real-time analysis, and comparing 
cloud and edge performance. The following methodology and 
experiments were used:  
1. Training and accuracy:  

o The dataset with nine inputs and one output (Table 1) 
was extracted from the original dataset [19].  

o The importance of each feature was measured using 
PCA algorithm [3, 16]. 

o Using subsets of the dataset based on the importance 
of the features, 11 models were extracted and 
compared.  

o Accuracy of several models was compared using 
various training and testing percentages. 

o The accuracy using three algorithms and the confusion 
matrix for the best four models were measured and 
compared.   

2. Real-time prediction accuracy: 
o The model with nine features was used as a reference 

to compare with the other models in real-time 
experiments.  

o The best four models were tested using real-time 
experiments with different algorithms to measure 
accuracy. 

3. Real-time prediction time: 
o Prediction time was measured for the top four models 

on IoT edge using two versions of Raspberry PI. 
o Prediction time was compared at the edge and using 

Microsoft Azure Cloud.  

IV. EXPERIMENTS AND RESULTS  

A. Training and features selection  

The model with nine values (Top 9 model) used all features 
from the accelerometers of the three smartphones. Here, Light 
GBM produced 99.65% accuracy compared to 99.43% for 
Extra Trees and 96.83% for Random Forest as shown later in 
Table 4.  

PCA was utilized to reduce features in the context of 
recognizing human activities. It is known that not all of these 
features are equally significant for accurately categorizing 
human activities. The most important parameters that are 
responsible for the majority of the variance in the data were 
found. The reduced features representation for the 
classification job can then be created from these primary 
components. 

In the first experiment, the variation in the importance of 
the features is depicted in Figure 3. Based on Figures 1 and 2, 
the orientation of the smartphones is either vertical or 
horizontal, and none of the anticipated behaviors rely on the z-
component, but this is not the case if we have sleeping or 
falling categories. Additionally, the horizontal orientation of 
the smartphone switches the impact of the x and y components 
on the waist, making the x-component on the waist the most 
important feature, followed by the shin_y and arm_y, and none 
of the top 5 features include a z-component. 

 
Figure 3: Feature importance for three smartphones 

Based on Figure 3, various models were proposed as listed 
in table 2, where each model in the table is described by its 
features listed in the table, the accuracy was measured using 
Light GBM for 11 models. The models are grouped as: 

0
0.2
0.4
0.6
0.8

1
1.2

Feature Importance

Table 1: A sample of HAR dataset using accelerometer for 3 smartphones and four categories 
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• The first three models are based on one smartphone each; 
arm, waist, or shin.  

• The next five models from Top1 to Top 5, used the most 
important features sequentially, Top 1 used only the most 
important feature, and Top 2 used the first and second 
most important features, and so on. 

• WSS (Waist_x, Shin_x, Shin_y), and WAA (Waist_x, 
Arm_x, Arm_y) are models with only two smartphones, 
but with three features. WSS used x from the waist which 
is the most important feature, followed by top two features 
from the shin, while WAA used top two features from the 
arm instead. In this case, we reduced the number of 
smartphones as well as the number of features. 

• Lastly the Top 9 model that used all features from three 
smartphones. 

The outcomes for 11 models are represented in Table 2 and 
Figure 4. Results shows that the accuracy using one 
smartphone with three features approached 93.4% for the Arm, 
and around 90% using Waist or Shin, which are sufficient in 
some applications.  

It should be mentioned that the accuracy when employing 
the most significant feature was close to 80%. However, only 
one feature (11% of the features) was utilized. Adding the next 
top important feature will improve the result to 93.4% which 
is equivalent to Arm model with three features. 

Table 2: Accuracy level for 11 models using Light GBM 
Model  Accuracy (%) Features 
Arm 93.4 arm_x, arm_y, arm_z 
Waist 90.2 waist_x, waist_y, waist_z 
Shin 89.9 shin_x, shin_y, shin_z 
Top 1 79.72 waist_x 
Top 2 93.4 waist_x, shin_y 
Top 3 98.49 waist_x, arm_y, shin_y 
Top 4 98.83 waist_x, arm_y, shin_x, shin_y 
Top 5 99.14 waist_x, arm_x, arm_y, shin_x, shin_y 
WSS  95.52 waist_x, shin_x, shin_y 
WAA  97.48 waist_x, arm_x, arm_y 
Top 9 99.65 All the 9 features from 3 smartphones 

The accuracy was improving with additional features and 
approached 98.49% with top three features from three 
smartphones. Here, Top 3 model still needed the three 
smartphones despite using only one-third of the features to 
create a model with a relatively high level of accuracy. More 
features didn't significantly enhance performance over the Top 
3 as seen in Table 2, where Top 4 accuracy was 98.83% and 
Top 5 accuracy was 99.14%, and they still need three 
smartphones. 

 
Figure 4: Accuracy for 11 models using Light GBM 

Reducing number of smartphones will reduce costs and 
make configuration easier, WSS model as shown in Table 2 

uses three features from two smartphones (Waist and Shin), 
and the model produced 95.52% accuracy, while WAA model 
produced 97.48% using three features from the Waist and the 
Arm. It is clear that combining features from the Arm with the 
Waist is better than combining features from the Shin with the 
Waist. 

Top 9 model used all features, the accuracy was 99.65% 
using Light GBM, this level made it possible to consider this 
model as a benchmark to compare it with others in real-time 
experiments. Later, Top 9 was compared with Top 3, 4, and 5.  

The previous experiments used 50% (60000 entries) of the 
dataset for training and the remaining for testing. Table 3 
shows that if the percentage of the training entries are between 
80% and 40%, it will not affect the accuracy significantly. 

Table 3: Accuracy for different training and testing percentages 
using 9 features with Light GBM 

Train/Test 
percentage 

80/20 60/40 50/50 40/60 20/80 5/95 

Accuracy (%) 99.67 99.66 99.65 99.62 99.49 99.14 

For example, when 40% of the dataset was used for 
training, then 48000 entries were sufficient to capture the 
information from the dataset to build the model. Even 20% 
produced high accuracy for such a dataset. The number of 
predicted categories, and the nature of features made it 
possible to have sufficient accuracy even for training by 5% 
(3000 entries) of the total entries of the dataset. But, this will 
not be the case if more features and more categories are added. 

Table 4: Accuracy percentages for the best four models using three 
algorithms 

Model  Random Forest Extra Trees  Light GBM 

Top 3 94.69 98.16 98.49 
Top 4 95.06 98.68 98.83 
Top 5 96.22 98.97 99.14 
Top 9 96.83 99.43 99.65 

As mentioned earlier, Light GBM, Extra Trees, and 
Random Forest are popular algorithms in smart systems 
including HAR. Table 4 shows the accuracy results of using 
these three algorithms on the best four models shown in Figure 
4. It is clear that Light GBM produced best accuracy among 
the other algorithms listed in the table, followed by Extra Trees 
algorithm. 

The frequency of system confusion to find the proper 
category is measured by the confusion matrix.  While there 
was little confusion between walking and running, and this 
confusion decreases when additional features are included, as 
was the case when nine features were employed, there was 
almost no confusion between standing and sitting on one side 
and running from the other side as seen in Table 5. 

B. Real –time prediction 

In this experiment, two models were running 
simultaneously, with Top 9 serving as the standard for 
comparison. To evaluate accuracy, Top 3, Top 4, and Top 5 
were compared to Top 9. The results of three tests are shown 
in Table 6, which compares the number of categories that were 
accurately predicted to the overall number of messages 
received at the edge. It was discovered that the accuracy for 
Top 3 model was approximately 89% in practice, even though 

70

80

90

100

Accuracy (%)
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the same model had more than 98% in training. Top 4 
performed better with 93.84%, and Top 5 model had 94.07% 
accuracy.  

The models in practice clearly provided less accurate 
results than those achieved during training, where the type of 
smartphone and the precision of the accelerometer vary from 
one brand to another, and where the quantity of motions 
captured in a time interval also had an effect on results. The 
posture of the smartphone on the body affect the accuracy as 
well. In this case, we made use of various smartphone brands 
and various data rates, and obtained reasonable practical 
accuracy using fewer number of features. 

Table 5: Confusion matrix for the best four models with Light 
GBM 

  Predicted Label 
  running sitting standing Walking 

Tr
ue

 L
ab

el
 

running 14589 1 72 312 
sitting 2 14736 111 77 

standing 0 41 15021 29 
walking 107 32 124 14746 

( a ) Top3 
 

  Predicted Label 
  running sitting standing walking 

Tr
ue

 L
ab

el
 

running 14715 1 73 185 
sitting 4 14781 79 62 

standing 0 41 15019 31 
walking 93 10 125 14781 

( b ) Top 4 
 

  Predicted Label 
  running sitting standing walking 

Tr
ue

 L
ab

el
 

running 14751 1 72 150 
sitting 2 14842 40 42 

standing 2 20 15043 26 
walking 78 10 72 14849 

( c ) Top 5 
 

  Predicted Label 
  running sitting standing walking 

Tr
ue

 L
ab

el
 

running 14860 1 11 102 
sitting 3 14885 17 21 

standing 2 1 15084 4 
walking 34 2 13 14960 

( d ) Top 9 
 

Table 6: Real-time prediction accuracy at the edge  

Model  Real-time Accuracy  
Top 3 9643/10828 (89.05 %) 
Top 4 8381/8931 (93.84 %) 
Top 5 6270/6665 (94.07 %) 

C. Prediction time at the edge and the cloud 

In this part, Light GBM algorithm was used, and the best 
four models were deployed at the edge in real-time prediction 
process. Smartphones used UDP to send messages through 
Wi-Fi to the Raspberry PI device as shown in Figure 2, and the 
Raspberry PI recorded the time before and after the prediction 
process. Smartphones were configured to read sensors and 
send values every 50 milliseconds (20 Hz). 

Two versions of Raspberry PI were used, the key 
differences between the two models are the processor and the 
RAM; Raspberry Pi 4 is powered by a quad-core ARM Cortex-
A72 processor, is faster and more powerful than the quad-core 

ARM Cortex-A53 processor used in Raspberry Pi 3. 
Raspberry Pi 4 comes with up to 8GB of RAM, compared to 
1GB available on Raspberry Pi 3 [2]. 

Table 7 compares between the prediction times of the two 
hardware models using Light GBM; the table shows the 
average prediction time per request for 3000 sample requests. 
Considering the arrival rate of messages is one every 50 
milliseconds, both systems could handle predictions in 
reasonable times; Raspberry PI 4 was capable of predicting 
one request in less than 3 milliseconds, the Raspberry PI 3 
could predict at a rate of less than 6.1 milliseconds for each 
prediction if all features were employed. In comparison to the 
model using nine features, Table 7 shows that less features led 
to faster replies. The faster replies indicates simpler models 
and less processing time is needed when we use fewer features. 

Table 7: Average Prediction time using IoT edge for different 

models using Light GBM 
Model  Prediction time on 

Raspberry PI 3 
(milliseconds) 

Prediction time on 
Raspberry PI 4 
(milliseconds) 

Top 3 5.811 2.387 
Top 4 5.827 2.401 
Top 5 5.877 2.589 
Top 9 6.097 2.964 

Light GBM is generally faster than Random Forest and 
Extra Trees due to its use of gradient-based boosting and 
histogram-based binning. This makes it well-suited for real-
time applications. Extra Trees can be slower when dealing 
with high-dimensional data, as it generates more trees than 
Light GBM. Random Forest uses a combination of bagging 
and random feature subsets, which needs more time [1, 10, 27].  

Table 8 compares prediction time using the three 
algorithms, Light GBM was the fastest among the three, it took 
less than 3 milliseconds using nine features on Raspberry PI 4, 
Extra Trees came next with 3.6 milliseconds, and Random 
Forest with more than 27 milliseconds. Using Raspberry PI 3, 
predictions took longer; it consumed about 6.1 milliseconds 
using Light GBM, 15.681 milliseconds using Extra Tress, and 
more than 166 milliseconds using Random Forest algorithm. 

Table 8: Prediction time for Top 9 model using different 
algorithms on Raspberry PI 3 and 4 

Model  Prediction time on 
Raspberry PI 3 
(milliseconds) 

Prediction time on 
Raspberry PI 4 
(milliseconds) 

Light GBM 6.097 2.964 
Extra Tree 15.681 3.622 
Random Forest 166.75 27.313 

About cloud computing, the last experiment used 
Microsoft Azure cloud, the edge send requests to the cloud 
for processing. To compare processing speed and latency, a 
web service was used to deploy the Top 9 model in the cloud. 
The cloud server used a container with a 1 GHz CPU and 
1GB of RAM in this case to handle requests. Faster cloud 
processing container with larger memory will speed up 
prediction, but processing costs per hour will also increase, 
but will not decrease the network latency.  

There are numerous reasons that might contribute to cloud 
latency, such as network congestion, physical distance 
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between the device and the cloud server, and the processing 
time needed by the cloud server [11].  

Table 9: Azure cloud delay testing 

Total time 
(milliseconds) 

Network delay 
(milliseconds)  

Prediction time in 
the cloud 

(milliseconds) 

5834 5727 107 

Here, the network between the edge and Azure cloud and 
inside the cloud itself caused the majority of the delay. The 
configuration of the container affects how quickly a request is 
processed in the cloud. Less than 2% of the total time in this 
scheme, as shown in Table 9, was consumed in prediction; the 
rest time was consumed by network delays caused by 
transmissions inside the cloud, queuing, and sending between 
edge devices and the cloud. The overall duration was here 
about 5.8 seconds per prediction, compared to a few 
milliseconds at the IoT edge in the previous experiments. 

About scalability, if the arrival rate is one request every 
50 milliseconds and nine features are employed, the Raspberry 
PI 4 edge can provide one prediction in 3 milliseconds, which 
means it can support more than 16 users. For each IoT edge, 
the number of users can be increased by reducing the amount 
of features and slowing down the arrival rate. For example if 
one request is sent every 250 milliseconds, and one request 
needed less than 2.5 milliseconds as in Top3 and Top4 models 
using Raspberry PI 4 as shown earlier in Table 7,  then one 
edge can handle more  than 100 users. The system may support 
a greater number of users by adding more IoT edges. 

 Table 10: Comparing results of other articles with this 
proposal 

Reference Sensor  Activities  ML models Accuracy  
[2] , 2020 Accelerometer, 

MPU6050 
Using 

Raspberry PI 
edge 

Walking, sitting, 
Running 

ANN , 
LSTM-RNN 

Training 
98% 

Real-time 
86% 

[15] , 2022 IMU, and heart 
rate  

walking, sitting 
walking up/down, 
standing, laying  

CNN 
Fusion,  
GRU 

96.28% 
 

[27] , 2023 IMU walking, driving, 
active status 

tree-based 
models 

93% 

[22] , 2019 IMU Walking 
upstairs/downstairs, 
sleeping, standing  

LSTM, 
CNN 

 96.4% 

This 
proposal  

Accelerometer 
( different 
number of 
features)  

Walking, sitting, 
Running, standing 

Light GBM, 
Extra Trees, 

Random 
forest 

 

Training 
99.14%  

Real-time  
94% 

The outcomes of this proposal is compared in Table 10 
with some recent articles and their findings; the listed works 
made use of smartphones and other smart sensors to identify 
various activities. The majority of the studies rely on signal 
processing with multiple types of sensors, with the main 
objective being to improve forecast speed or accuracy. To 
improve response time, they used developed algorithms, 
combinations of sensors, or edge computing. But this proposal 
produced a significant increase in speed and accuracy using 
only one type of sensors, and with reduced features with 
around half number of features without affecting accuracy. 
One Raspberry PI can handle scalable number of users 
depending on the application in use and the required rate of 
predictions. 

V. CONCLUSIONS 

Monitoring information generated by IoT devices is used in 
a variety of applications that operate in real time. Machine 
learning is used to assess and predict outcomes whereas cloud 
computing is utilized to store data for a range of applications. 
These methods are used by intelligent systems to offer services 
to the end users. Smartphones and other devices create a lot of 
sensor data for IoT systems like HAR, which requires complex 
computations.  

A variety of situations, like healthcare and rehabilitation, 
where it is crucial to continuously monitor patients. When 
necessary, HAR systems should be quick to react, and precise. 
HAR may use edge machine learning to improve the process 
and solve challenges. In order to speed up the prediction 
process and lower the amount of data that needs to be 
transferred to the cloud, we suggested using IoT edge 
computing in this study with fewer features. 

The accuracy of the accelerometer measurements from 
three smartphones utilized in this research was approximately 
99.6%. By lowering the number of features and utilizing the 
IoT edge, prediction time decreased considerably without 
significantly affecting accuracy level. In real-time testing, 
accuracy was 94%, while during training it was 99% using just 
five features. The results in this proposal are more accurate in 
training and real-time compared to the previous publications 
shown in Table 10, and the prediction speed was sufficient 
even for tens of users on the same edge.  

In practice, smartphones might be replaced by 
microcontrollers and IMU sensors, some kits like MPU6050 
include built-in accelerometer and gyroscope. The raspberry 
PI was used as a small, well-known microcomputer, and the 
dataset used in this study was derived from data generated by 
smartphones. In some situations, standard computers can serve 
as an IoT edge, and in others, smartphones can function both 
as an IoT edge and a mobile sensing device. 

The use of machine learning models on smartphones and 
wearables might be considered as an extension of this 
research, sensors and microcontrollers might be used to 
support more services. Different IoT edge devices may 
manage groups of users in a scalable solution, and integrate 
together to cover different places and use the cloud for storage 
and analysis. 
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