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Abstract— Plant classification and recognition is a vital task 

for many applications including retail, agriculture, and food 

processing. Several state-of the-art algorithms were developed in 

order to address this challenge. While there are several papers that 

were published to propose classification algorithms for plants and 

fruits, these algorithms targeted small datasets with 10K or fewer 

images. This study compares the performance of several Deep 

Learning models in fruit and plant classification on a large plants 

and fruits dataset with more than 225k images. This study aims to 

guide researchers about the performance implications of using 

popular models at large-scale by testing the scalability and 

reliability of these models. Fruits-262 is a dataset of over 225k 

images representing 262 different classes of plants and fruits. To 

ensure fairness, we trained each model using the same runtime 

environment on the Fruits-262 dataset. The models were evaluated 

using four different evaluation metrics; accuracy, loss, validation 

accuracy and validation loss. We also considered the 

computational complexity, the training time and the model size in 

order to evaluate the efficiency, reliability and scalability. Our 

findings reveal that there are some models that can offer high 

classification accuracy, yet with high computational resources and 

long iterations. This paper explores some potential alternatives 

and highlights some interesting models for future research.  

Keywords—: Plants; Classification; Convolutional Neural 

Networks; Comparisons; Analysis 

1. INTRODUCTION 

Artificial intelligence (AI) has revolutionized many fields 

and industries. It has become one of the most important 

technologies in recent years. AI applications provide 

powerful tools for solving complex problems, enhancing 

productivity and improving performance. Computer vision is 

one of the domains in which AI has made great strides. This 

subfield focuses on enabling computers to analyze and 

interpret visual data such as videos and images. 

Computer vision techniques are used in several types of 

applications including fruit detection [1], fruit classification 

[2], fruit grading [3], yield estimation [4] and disease 

classification [5]. Image classification is a critical aspect of 

computer vision. This involves assigning labels or categories 

to images according to their content. This process is 

especially relevant when it comes to fruit classification and 

recognition since it can help with various agricultural 

processes such as sorting and grading fruits or assessing their 

quality [6]. 

Deep learning is a subset of AI that has been instrumental 

in the advancement of computer vision techniques. It uses 

artificial neural networks to learn complex patterns and 

representations based on large amounts of data [7]. 

Convolutional Neural Networks (CNNs), in particular, have 

become an effective methodology for image classification 

tasks because of their ability to learn hierarchical feature-

representations from raw pixel data. Different CNN 

architectures with different performance levels and 

characteristics have been developed and proposed over the 

recent few years. 

In this paper, we compare the performance of plant 

classification and recognition task for 28 state-of the-art 

algorithms from the following families: EfficientNet, BiT, 

ResNet, Inception-ResNet, PnasNet and MobileNet. We aim 

that by evaluating and contrasting the algorithms on a large 

dataset, we can provide valuable insight into their strengths, 

weaknesses, and ultimately inform the selection of 

algorithms appropriate for large-scale applications within the 

computer vision field and plant recognition domain.  

This paper is structured where section 2 reviews the 

relevant literature while Section 3 discusses the methodology 

used in this paper. The results are presented in Section 4 and 

the limitations of this research are listed in Section 5. The 

paper concludes with the Conclusions and Future Work in 

Section 6. 

2. RELATED WORK 

Plant recognition and classification has been the focus of 

several researchers in the last decade. Recent papers can be 

divided into two large domains: feature-based methods and 

deep learning-based methods. These two types are discussed 

over the next subsections.  

 

2.1. Feature-based Methods 

The authors in [8] proposed a fruit classification system 

that uses image features like color, shape, and texture. The 

dimensions of the fruit images were reduced using Principal 

Component Analysis (PCA) [9] before being fed into 

classification algorithms like Fed-forward Neural Networks 

(FNN) or Support Vector Machines (SVMs). The authors 

used a small dataset that comprises 1,653 images from 18 

different classes to test the model accuracy leading to a 

conclusion that SVM had the highest accuracy at 88.2%. 
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However, the dataset did not include fruits or plants that had 

been sliced, dried or partially covered.  

In a recent study [12], the authors used Bayesian-

optimized Support Vector Machine and hybrid feature-based 

Random Forest classifier to compare the performance and 

accuracy of five different CNN models in detecting leaf 

diseases of apples, corn, potatoes, tomatoes and rice plants. 

The authors used a medium-size dataset containing 54k 

images and they concluded that MobileNet-driven models 

provide best accuracy at 96% in disease detection. However, 

the authors didn’t demonstrate whether MobileNet models 

will continue to show superior performance with large 

datasets that incorporate higher number of classes.  

Sandler and others [45] compared the performance of 

MobileNet based models in conducting object detection and 

classification activities. They compared the performance of 

MobileNet on ImageNet and the large COCO dataset with 

200k+ images. Their performance showed that MobileNetV2 

was the most efficient model out of the selected models. 

However, their work was limited to 6 models only and they 

didn’t incorporate large set of models.  

In a different study [10], the authors employed another 

Random Forest approach (RF) combined with KNN for the 

classification of three fruit types: Strawberry, Apples and 

Oranges. The authors used Scale-Invariant Feature 

Transform (SIFT) to extract features like shape, color and 

scale. The results of their experiment were interesting and 

showed that fruits with different shapes are harder to classify 

than fruits with similar shapes. However, their experiment 

was limited to 137 fruit images only.  

In [11], the combination of machine-learning algorithms 

and color space was used to classify Cape gooseberry 

ripeness. The researchers used 925 images for both model 

training and validation. They reported that SVM was the most 

accurate machine learning classifier (70.14%) out of twelve 

different classifiers. Their method was limited to a small 

dataset and small coverage of algorithms. Multilayer neural 

networks approach was used to classify a total of 100 tomato 

images into large, medium and small classes along with four 

grades in each class [3]. On such small dataset, the average 

accuracy was 90.7%. 

There are also a few studies which use images other than 

RGB, such as Near Infrared (NIR), or multispectral images. 

In [13], the authors proposed an in-field leaf-spectroscopy-

based Grapevine varieties classification method. They 

collected leaves from 20 different types of grapevines and 

measured the NIR spectrum of each leaf. The spectra from 

these leaves were fed into a combination of two machine-

learning algorithms: Support vector machines (SVM), and 

Artificial Neural Networks (ANN). Their method produced 

an overall accuracy of 87.25%.  

In [14], a classification of strawberry ripeness using 

multispectral imagery of 17 bands is also proposed. The PCA 

was used to reduce the size of the multispectral image's 

features. 

These papers were limited to small-to-medium size 

datasets with fewer than 100k images or focused on small 

number of classes in their classification algorithm which 

made it difficult to generalize these models. 

2.2. Deep-Learning Methods 

Deep learning (DL), or deep neural networks, are derived 

from the human brain. DL-based methods use a large neural 

network with several layers, nodes and activation functions 

[15]. Deep learning methods have become popular in recent 

years and are widely used for image classification tasks. 

Many works [10, 16 and 17] have reported promising results 

using deep learning methods on the classification of fruit 

images.  

For example, [18] presented a lightweight CNN for the 

classification of Fruit-360 dataset. This paper showed that 

CNN performance is improved by adding additional features, 

such as RGB color and histogram. Their method achieved the 

highest accuracy of 93% in fruit classification. However, the 

dataset they used for their research contains 3 fruit classes 

only. Furthermore, [16] proposed an CNN model for 

classification of fruits on the Fruit-360 dataset. This model 

achieved a classification accuracy rate of 94.35%.  

Fruits-360 dataset has become a popular reference for fruit 

classification and recognition with its medium size (69k 

images). [35] compared the performance and accuracy of 

fourteen different deep learning-based models on this dataset 

where MobileNet based models produced the best accuracy 

rate.   

Yu et al. [32] leveraged deep learning using the fastest 

sensor in conjunction with a ResNet50 neural network to 

detect fruits for a strawberry-picking robot. The analysis 

results obtained in this study achieved an accuracy of 

95.78%.  

VGG-16 architectures have become popular in plant 

classification and disease detection [34]. Fuentes et al. [33] 

compared the three types of sensor families with respect to 

different architectures and achieved better results with VGG-

16 architecture together with R-CNN, which is faster 

compared to CNN, together with the  

On the other hand, [19] proposed a lightweight CNN 

model for fruit and plant classification on two different 

datasets with a comparison to a fine-tuned VGG-16 [20] 

model. This method had a classification accuracy between 

99.49% for dataset-1 and 85.43% in dataset-2.  

Deep learning methods developed toward video capturing 

as well where [21] proposed a classifier to categorize fruits in 

retail stores using video captured with the installed camera. 

The researchers used two convolutional networks; 

InceptionV3 [20] and MobileNet [22], to detect and classify 

vegetables and fruits on video. InceptionV3 achieved the 

highest accuracy (76%) for a ten-class dataset of fruits. 

 

As discussed in the literature review, researchers tend to 

use smaller datasets in evaluating the performance of 

machine learning models. However. industries aim to deploy 

machine learning algorithms at large-scale where huge 

amounts of data are expected to be processed. Also, research 

papers that compares the performance of deep-learning 

models tend to focus on relatively small number of models in  

their comparisons. This paper focuses on addressing these 

gaps by comparing the performance of 28 models from the 

most popular model-families on a large dataset with 225k+ 

images.  
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3. METHODOLOGY 

3.1. Selected Models and Architectures 

This paper compares several AI and DL algorithms from 

the following families: EfficientNet, ResNet, Inception 

ResNet, MobileNet, NAS and BiT. Over the upcoming few 

subsections, these families are discussed in detail.  

3.1.1. EfficientNet 

EfficientNet is a family of Convolutional Neural Networks 

(CNNs), which are designed using compound scaling to 

balance depth, width and resolution [23]. 

1. EfficientNet-B0: This is the base model that 

serves as a basis for all other models with the 

architecture shown in Figure 1. This is the 

smallest and the least computationally expensive 

model in the family. EfficientNet-B0 offers a 

lower level of accuracy than the larger models.  

2. EfficientNet-B1 to EfficientNet-B7: These are 

enlarged versions of the base (B0) model, created 

by compound scaling. Compound scaling is a 

method that scales network width, depth and 

input resolution simultaneously to improve 

performance without increasing computational 

costs. The accuracy and network size increase as 

the model number (from B1 to B7) increases. 

3.1.2. ResNet (Residual Networks) 

ResNet is a CNN architecture that uses residual 

connections (skip connection) to solve the problem of 

vanishing gradients in deep networks [24]. ResNets come in 

different depths such as ResNet50, ResNet101 and 

ResNet152. 

3.1.2. ResNet (Residual Networks) 

ResNet is a CNN architecture that uses residual 

connections (skip connection) to solve the problem of 

vanishing gradients in deep networks [24]. ResNets come in 

different depths such as ResNet50, ResNet101 and 

ResNet152. The various ResNet algorithms are typically 

identified by the number of layers in the network. Some 

common ResNet architectures include: 

1. ResNet-18: This architecture consists of 18 layers. 

This architecture includes 5 stages, each with 2 

convolutional layers and a pooling layer, as well as 2 

fully-connected layers. There are 8 blocks of residual 

layers, each with 2 convolutional layers. 

2. ResNet-34: This model contains 34 layers. It includes 

5 stages, each with 2 convolutional layers and a 

pooling layer, as well as 2 fully connected layers. The 

model has 16 blocks of residual layers, each with 2 

convolutional layers. 

3. ResNet-50: This model is an architecture that consists 

of 50 layers, and instead of using the usual 2-layer 

residual block, it uses bottleneck blocks. These blocks 

consist of 3 convolutional layers (1x1, 1x3, and 2x1) 

instead. ResNet-34 uses bottleneck blocks to reduce 

complexity and parameters. Figure 2 shows a sample 

architecture for the ResNet-50 model. 

4. ResNet-101: ResNet-50 is a model with 101 layers. It 

follows a similar architecture, but has fewer 

bottleneck blocks. This change results in increased 

capacity and depth. 

5. ResNet-152: This architecture consists of 152 layers. 

It uses bottleneck residual blocks again, but has an 

even greater number of blocks compared to ResNet-

101, increasing the depth and capability of the 

network

Fig.1 Architecture of EfficientNet-B0 Image taken from [39] 

Fig. 2 Sample ResNet50 Model Architecture. Image taken from [40] 
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All ResNet architectures share the same design principles. 

For example, they use residual connections to allow the 

network to learn residual functions. Also, ResNet 

architectures are capable of performing at the highest level on 

a variety of computer vision tasks including object detection, 

image classification and segmentation. The choice of ResNet 

models depends on the balance required between accuracy 

and computational power for a particular task. ResNet models 

can be combined with other models as well. For example, 

[32] combined ResNet with Fast Fourier models to establish 

a new Fast Fourier Convolutional ResNet (FFC-ResNet).  

3.1.3. Inception ResNet  

Inception ResNet is a family of hybrid architectures that 

combines ideas from both the Inception and ResNet 

architectures [25]. This architecture was introduced by 

researchers at Google. The key components of this model are: 

Inception modules: are the basic building blocks 

of the Inception architecture. Inception modules 

are composed of parallel convolutional branches, 

each with a different filter size and operation, 

such as 3x3, 5x5, and 1x1 convolutions. These 

branches' outputs are then concatenated together 

to create the module's final output. This design 

allows the network to be wider and capture 

information on multiple scales at each layer. 

Residual connections: The ResNet architecture's 

primary innovation is the use residual 

connections, also known as a skip connection. 

This allows the network to learn residual 

functions while reducing the problem of 

vanishing gradients in deep networks. In 

Inception ResNet, residual blocks are created by 

combining Inception modules with residual 

connections. This enhances the learning 

capability and convergence of the networks. 

 

Inception-ResNet has two main variations: 

 

 

 

1. Inception ResNet-V1: This variant was built by 

incorporating the residual connections in 

Inception-V3 architecture [25]. It has the same 

complexity and depth as Inception-V3, but with 

a faster convergence rate and slightly better 

performance. 

2. Inception ResNet-V2: This version is based on 

a more advanced Inception-V4 architecture. 

Inception ResNet-V2 is more complex and has a 

deeper design than Inception ResNet-V1 [25]. 

This complexity results in better performance for 

image classification tasks. 

Inception-ResNet has demonstrated the best performance 

in various computer vision tasks such as object detection, 

image classification and segmentation with an architecture as 

shown in Figure 3. These results were achieved while 

maintaining an appropriate balance between model size and 

computational resources. 

3.1.4. MobileNet (Mobile Networks) 

MobileNet is a lightweight CNN family designed for 

embedded and mobile devices where computational 

resources and power consumption are limited. MobileNets 

are based on depth-separable convolutions which reduces the 

complexity and number of parameters compared to 

conventional CNNs [26]. The success of MobileNets comes 

from a belief that the model size is not a necessity for 

achieving better results. This has shown tremendous success 

in various experiments as shown in [12] and [35]. There are 

several variations of MobileNet models including: 

1. MobileNet-V1: The first MobileNet version, 

developed by Google researchers, is based upon the 

concept of depth-wise separate convolutions. The 

standard convolution is replaced by two separate 

operations, depth-wise (which applies convolution 

filters to each channel separately) and point-wise 

(which combines the outputs from depth-wise 

convolutions with 1x1 convolutions). This design 

reduces the computational complexity and number of 

parameters compared to conventional CNN 

architectures. 

Fig.3 Inception ResNet Model Architecture. Image taken from [41] 

Fig.4 Mobile-V2 Building Blocks. Image taken from [42]
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2. MobileNet-V2: MobileNet-V2 is the second version, 

which builds on MobileNet-V1 with inverted residual 

blocks. It also introduces linear bottlenecks and 

inverted residual blocks that are Rest-Net like 

structures, with input and output channels in reverse 

order. The linear bottleneck consists of a convolution 

layer 1x1, which reduces the channels without 

introducing nonlinearities. This helps preserve the 

information in the network. MobileNet-V2 is a model 

that improves efficiency and performance compared 

to MobileNet-V1 [26]. Figure 4 shows the main 

building blocks of MobileNet-V2 

3. MobileNet-V3: The latest version of MobileNet and 

it combines architectural innovations from 

MobileNet-V2 with advanced search techniques such 

as Neural Architecture Search (NAS), NetAdapt, and 

other similar algorithms. 

 

3.1.5. NASNet (Neural Architecture Search Networks) 

NASNet models were invented by researchers at Google 

Brain while researching Neural Architecture Search (NAS) 

[27]. NAS offers automated methods to design high-

performance neural networks. These automated methods use 

reinforcement learning to search for the optimal architecture 

by training and evaluating numerous candidate architectures 

on a given dataset.  

Figure 5 illustrates the main building blocks of NAS. 

There are several examples of NASNet models. For instance, 

1. NASNet-A is the original NASNet discovered 

by NAS. It achieved the best possible 

performance on ImageNet dataset for image 

classification tasks. This model is 

computationally costly and therefore not 

suitable for devices with limited resources. 

 

2. NASNet-Mobile is a smaller and more efficient 

version NASNet-A. It was designed specifically 

for mobile and embedded devices. It has a 

similar architecture to NASNet-A, but with 

reduced width and depth. This minimization 

results in a smaller number of parameters. 

3. PNASNet uses more advanced version of 

NAS,called Progressive NAS (PNAS) to 

provide better results for large datasets. 

3.1.6. BiT (Big Transfer Networks) 

The BiT family is a collection of pre-trained CNNs that 

uses transfer learning in order to achieve high performance 

for various computer vision tasks [28]. BiT networks can 

classification, or segmentation. 

      The BiT network architecture is based on ResNet, but the 

innovation comes from the pre-training method. Researchers 

pre-trained the models using a large dataset (ImageNet-21k 

containing over 14,000,000 images), and then fine-tuned 

their performance on smaller datasets. Figure 6 shows the 

model architecture for BiT-CNN. 

The key principles that have led to BiT's success include: 

1. Scale: BiT is trained on large datasets, which allows 

them to learn more features and generalize better 

across tasks. 

2. Architecture: BiT uses the ResNet architecture 

which has been proven effective in a variety of an 

object identification tasks. Researchers used different 

depths (e.g., ResNet-50 ResNet-101 ResNet-152) in 

order to examine the impact of architectural choices 

on transfer learning. 

3. Fine-tuning: BiT models can be fine-tuned using 

task-specific datasets by following a simple but 

effective strategy. This strategy uses a large batch size 

and extensive data augmentation to allow the models 

to quickly adapt to new tasks.  

Fig.5 NAS Building Blocks. Image taken from [43] 

Fig.6 BIT-CNN Architecture. Image taken from [44]  
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This paper selected the most prominent algorithms from 

each of the families described earlier. Table 1 lists all the 

selected models and their respective families. The model 

names reflect important information about the model such as 

family name, model base, model version, size of the dataset 

that the model was pre-trained on (if any), fine-tuning 

parameters for the pre-trained model (if applicable), number 

of model layers, depth of the model, and whether the input 

images are resized to small, medium, large or specified width 

by height. All selected models were run in 5 different epochs 

and the performance for each epoch was captured. More 

details are discussed in the results section. 

4. RESULTS AND DISCUSSION 

4.1.Dataset 

Fruits-262 dataset was created to improve the process of 

fruit classification [29]. This dataset is selected due to its 

large size (225k+ images). Fruit-262 contains a vast majority 

of the popular and known plants and fruits. Due to the 

extensive and large number of images for each class (861 

images/class), the leveraged models will offer high-accuracy 

for plant and fruit classification. Below are the statistics for 

the selected dataset.  

1. Total number of images: 225,640 images 

2. Number of classes: 262 fruits and plants 

3. Average number of images for each 

label/class: 861 images 

4. Average image width: 213 pixels 

5. Average image height: 262 pixels 

All the plant and fruit classes were investigated to ensure 

enough number of samples is available for each class.  

Figure 7 shows the distribution of input images for sample 

classes in the dataset. 

Fig.7 Input Data Distribution for Sample Classes in the Fruits-262 

Dataset 

 

4.2 Run-time Environment 

All the models were run on Google Colab Pro to ensure 

fairness. Every model used 2 vCPUs with 32 GB RAM, 15 

GB persistent storage and a GPU. In addition, TensorFlow 

was used to implement each model using Keras library. 

4.3 Evaluation Metrics 

In evaluating selected models, the dataset was divided into 

two categories: training data and validation data. Appendix A 

defines the terminologies of training and validation data. In 

general, TensorFlow models use 4 main metrics to evaluate 

and monitor their performance. These metrics have been 

widely used in several research papers such as [36] and [45]. 

1. Accuracy measures the percentage of 

predictions that are correct. The number of 

correct forecasts divided by the total number is 

used to calculate it. TensorFlow's accuracy is 

usually used to solve classification problems. 

The goal is to determine the correct input class or 

category. Accuracy is calculated as the ratio of 

correct predictions to the total number of 

predictions: 

t

c

N

N
=Accuracy                    (1) 

   where NC  is the number of correct of predictions 

and Nt is the total number of predictions 

2. Loss is also called the objective function or cost 

function. It measures the difference between the 

predictions of the model and the ground truth 

labels. The loss function quantifies errors in 

model predictions and is used to guide the 

training process. Training is aimed at minimizing 

the loss through the adjustment of the model 

parameters. TensorFlow uses the Mean Squared 

error (MSE) to solve regression problems, and 

Cross-Entropy loss for classification problems. 

     Cross Entropy = (−
1

𝑁
) ∗ ∑ ytrue ∗

𝑁

𝑖=1

   log 𝑦𝑝𝑟𝑒𝑑 + (1 − 𝑦𝑡𝑟𝑢𝑒) ∗

                                log(1 − 𝑦𝑝𝑟𝑒𝑑)                            (2)  

Equation cited from [46] 

where N is the number of samples, ytrue represents 

the true labels and ypred represents the model's 

predicted probabilities.  

3. Validation Loss is calculated based on a 

validation dataset that is separate from the 

training data. The validation dataset is used to 

monitor overfitting and evaluate the model on 

new data. The validation loss may be high for a 

model with low training loss. This indicates that 

the model has learned to memorize the training 

data but is not able to generalize it well. 

4. Validation Accuracy is the accuracy metric that 

is calculated using the validation dataset. It is 

also used to monitor overfitting and evaluate the 

model performance when using unseen data. A 

high validation accuracy is a sign that the model 

generalizes and will perform well with new data. 

  

                                        

                         Validation Accuracy = Ncv /  Ntv           (3) 
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Where Ncv is the number of correct predictions on 

validation data and Ntv is the total number of correct 

predictions on validation data 

When evaluating model performance, the following rules 

apply: 

1. If Validation Loss is increasing and Validation 

Accuracy is decreasing, the model is cramming 

values and not learning. 

2. If Validation Loss is increasing and Validation 

Accuracy is increasing, this can happen due to 

overfitting. 

3. If Validation Loss is decreasing and Validation 

Accuracy is increasing, the model is learning and 

working fine. 

There are other evaluation metrics that could be used 

such as F1-score, precision and recall. In the next sub-

section, the experiment results will be presented and 

explained further. 

4.4. Experiment Results 

Running the models at large-scale for industrial purposes 

require continue retraining for the model based on incoming 

data. Therefore, the time spent for each epoch must be 

reasonable. While the term “reasonable” has subjectivity in 

its definition, the authors have identified that ~ 1 hour/epoch 

for such dataset. As a result, some algorithms were identified 

for their insufficient performance and limited scalability. 

These models are: efficientnet_b5, efficientnet_b6, 

efficientnet_b7 and pnasnet_large. Every epoch in these 3 

models took over 90 minutes (over 7.5 hours for 5 epochs) 

and therefore, they can’t provide good performance at large-

scale operation. Therefore, these models will be excluded 

from future comparisons.  

Table 2 shows the full time spent/epoch for each model (in 

minutes). It’s worth noting that longer execution times 

doesn’t imply higher accuracy.  

To prove this assumption, pnasnet_large model was 

included in the list of models that were compared. Therefore, 

Table 3 shows the comparison results for the selected models 

on the Fruits-262 dataset when trained for 5 different 

iterations (epochs).  The results indicate that efficientnetv2-l-

21k-ft1k has the highest accuracy and validation accuracy 

scores (and lowest loss and validation loss) while 

nasnet_mobile has the lowest validation accuracy and highest 

validation loss scores. 

The validation accuracy scores for all models are 

illustrated in Figure 8. Figure 8 shows that efficientnetv2-l-

21k-ft1k model is the best model. This model is an 

EfficientNet-V2 model that is pre-trained on a 21k image 

dataset and fine-tuned on a 1k image datasets. All input 

images to the model are resized to large size. The model 

efficientnetv2-l-21k-ft1k consumes a lot of resources due to 

its need to resize all images to large size. The model size is ~ 

428MB [30]. Therefore, there is a need for large-cluster to 

run such heavy processing.  

A good compromise is offered by the efficientnetv2-m-

21k-ft1k model. This model is an EfficientNet-V2 model that 

is pre-trained on a 21k image dataset and fine-tuned on a 1k 

image datasets. All input images to the model are resized to 

medium size. Due to the smaller resize, the model size is  

191MB only (56% less size than efficientnetv2-l-21k-ft1k). 

In addition, the average epoch length for efficientnetv2-l-

21k-ft1k is 40.5 minutes while the average epoch length for 

efficientnetv2-m-21k-ft1k is 30 minutes with around 25% 

time saving. 

 

Table 1. Selected Models and their respective families

Model Family Selected Model(s) Notes 

EfficientNet 

efficientnet_b0 V1 of EfficientNet with base of 0 

efficientnet_b1 Similar to efficientnet_b0 with base of 1 

efficientnet_b2 Similar to efficientnet_b0 with base of 2 

efficientnet_b3 Similar to efficientnet_b0 with base of 3 

efficientnet_b4 Similar to efficientnet_b0 with base of 4 

efficientnet_b5 Similar to efficientnet_b0 with base of 5 

efficientnet_b6 Similar to efficientnet_b0 with base of 6 

efficientnet_b7 Similar to efficientnet_b0 with base of 7 

efficientnetv2-b0 V2 of EfficientNet with base of 0 

efficientnetv2-b1 Similar to efficientnetv2_b0 with base of 1 

efficientnetv2-b2 Similar to efficientnetv2_b0 with base of 2 

efficientnetv2-b3 Similar to efficientnetv2_b0 with base of 3 

efficientnetv2-s EfficientNet V2 trained on 1k images resized to small size 

efficientnetv2-s-21k-ft1k 
EfficientNet V2 trained on 21k image and fine tuned on 1k images. All 
images are resized to small size 

efficientnetv2-m-21k-ft1k Similar to efficientnetv2-s-21k-ft1k but all images are resized to medium size 

efficientnetv2-l-21k-ft1k Similar to efficientnetv2-s-21k-ft1k but all images are resized to a large size 

ResNet resnet_v1_50 ResNet model with 50 layers 
Inception ResNet inception_resnet_v2 Inception ResNet-V2 model 

MobileNet 

mobilenet_v2_100_224 V2 of MobileNet with images resized to 100 x 224 

mobilenet_v2_130_224 V2 of MobileNet with images resized to 130 x 224 
mobilenet_v2_140_224 V2 of MobileNet with images resized to 140 x 224 

mobilenet_v3_small_075_224 V3 of MobileNet with small depth and images resized to 75 x 224 

mobilenet_v3_small_100_224 V3 of MobileNet with small depth and images resized to 100 x 224 
mobilenet_v3_large_075_224 V3 of MobileNet with large depth and images resized to 75 x 224 

mobilenet_v3_large_100_224 V3 of MobileNet with large depth and images resized to 100 x 224 

NASNet 
nasnet_mobile NASNet Mobile model 
pnasnet_large Progressive NASNet model prepared for large dataset 

BiT bit_s-r50x1 BiT small model based on ResNet_v2_50 
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On the other hand, the pnasnet_large model had the highest 

growth potential among all selected model although each 

epoch took over 2 hours (the longest among all selected 

models). 

5. LIMITATIONS 

This paper compared the performance of 28 models from 

different families. Despite the large number of models, there 

are several models that were not included in this experiment. 

For example, AlexNet and GoogleNet families were not 

included in this paper. Also, four evaluation metrics were 

used to evaluate these models. Other evaluation metrics 

should be included and can provide additional insights such 

as F1-score, precision and recall. 

 

6. CONCLUSION AND FUTURE WORK 

As the world evolves toward Artificial General 

Intelligence (AGI), there is a need to generalize algorithms 

and models to serve multiple purposes efficiently. In this 

paper, the authors explored popular machine learning 

algorithms that tend to perform well on small to medium size 

datasets. Some of these models didn’t perform well on a large 

scale.   

In conclusion, this paper compared the performance of 

several deep-learning models from several families on the 

large Fruits-262 dataset. These models tend to classify 

images with high-accuracy when applied on small-to-

medium size datasets.  

Through an extensive literature review, the authors 

discussed the latest developments in plant and fruit 

classification, the selected models, and performance 

comparison studies. 

In the methodology section, the authors outlined the data 

pre-processing, augmentation techniques and training 

strategies employed by each model. The performance of these 

models was then evaluated using metrics like accuracy, loss, 

validation accuracy and validation loss. The scores for 

validation accuracy were also visualized. 

The study identified a few models with faster execution 

and superior results that could be used at large scale. Several 

models didn’t retain high levels of accuracy when applied to 

large datasets (e.g., resnet, mobilenet and bit families).  Our 

findings revealed that efficientnetv2-l-21k-ft1k has the best 

accuracy and validation accuracy. Due to its large size, 

efficientnetv2-m-21k-ft1k can be used as an alternative 

model given its lower size and faster execution time. The 

pnasnet_large was also identified as having a higher potential 

for higher numbers of iterations, despite its relatively long 

learning time. 

In the future, this comparison needs to be implemented 

with higher number of epochs (iterations) with investigation 

to the models that showed higher potential (e.g., 

pnasnet_large). Furthermore, there is a need to explore the 

underlying reasons that prevented models like resnet and 

mobilenet from performing at the same accuracy offered at 

smaller datasets. Finally, the comparison results shown don’t 

reflect an ideal model that can offer best accuracy with low 

consumption of resources. Therefore, the development of a 

new model that achieves this balance is highly needed. 

 

 

 

 

 

 

 
Table 2. Execution Times in minutes for selected models over 5 epochs

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Model 1st Epoch 2nd Epoch 3rd Epoch 4th Epoch 5th Epoch 

efficientnet_b0 14.95 14.36667 14.31667 14.36667 14.31667 

efficientnet_b1 19.75 19.88333 19.63333 19.55 19.56667 

efficientnet_b2 24.48333 24.18333 24.25 24.21667 24.16667 
efficientnet_b3 36.83333 36.53333 36.5 36.56667 36.45 

efficientnet_b4 67.01667 66.43333 66.4 66.33333 65.55 

efficientnet_b5 90+ 90+ 90+ 90+ 90+ 
efficientnet_b6 90+ 90+ 90+ 90+ 90+ 

efficientnet_b7 90+ 90+ 90+ 90+ 90+ 

efficientnetv2-b0 24.71667 23.45 23.2 23.18333 23.21667 
efficientnetv2-b1 27.28333 26.55 26.78333 26.61667 26.95 

efficientnetv2-b2 31.71667 32.35 32.21667 31.73333 32.7 

efficientnetv2-b3 43.83333 43.45 42.81667 43.4 43.41667 
efficientnetv2-s 58.78333 58.3 58.33333 58.45 58.7 

efficientnetv2-s-21k-ft1k 16.45 16.21667 16.21667 16.2 16.16667 

efficientnetv2-m-21k-ft1k 30.25 29.93333 29.93333 29.93333 29.85 
efficientnetv2-l-21k-ft1k 41.11667 40.63333 40.61667 40.56667 40.46667 

resnet_v1_50 30.25 29.15 29.03333 28.53333 28.88333 

inception_resnet_v2 67.9666 67.4166 67.56666 68.6833 67.6833 
mobilenet_v2_100_224 24.48333 25.23333 25.3 24.15 24.45 

mobilenet_v2_130_224 13.83333 13.31667 13.23333 13.2 13.4 

mobilenet_v2_140_224 13.86667 13.76667 13.73333 13.53333 13.43333 
mobilenet_v3_small_075_224 11.61667 11.26667 11.26667 11.31667 11.43333 

mobilenet_v3_small_100_224 11.46667 11.53333 11.61667 11.91667 11.7 

mobilenet_v3_large_075_224 12.13333 11.85 11.88333 12.01667 12.13333 
mobilenet_v3_large_100_224 12.48333 12.46667 12.55 12.66667 12.56667 

nasnet_mobile 26.08333 25.23333 24.73333 25.13333 25.61667 
pnasnet_large 124.2 123.8667 123.5833 123.7167 122.0167 

bit_s-r50x1 30.68333 30.31667 30.28333 30.28333 30.33333 
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Table 3. Model Evaluation Metrics (for 5 epoch-run) - with highlights for the most accurate and least accurate 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure. 8 Validation Accuracy Scores across Selected Models over 5 Training Epochs on the Fruits-262 Dataset

Model Accuracy Loss Validation Accuracy Validation Loss 

efficientnet_b0 0.6271 2.4530 0.6581 2.3527 

efficientnet_b1 0.6246 2.4513 0.6570 2.3453 

efficientnet_b2 0.6213 2.4764 0.6497 2.3818 
efficientnet_b3 0.6408 2.3967 0.6639 2.3140 

efficientnet_b4 0.6259 2.4882 0.6461 2.4170 

efficientnetv2-b0 0.5263 2.8541 0.5720 2.6892 
efficientnetv2-b1 0.5335 2.8349 0.5815 2.6620 

efficientnetv2-b2 0.5251 2.8746 0.5645 2.7255 

efficientnetv2-b3 0.5671 2.7012 0.6042 2.5694 
efficientnetv2-s 0.6021 2.5822 0.6257 2.5010 

efficientnetv2-s-21k-ft1k 0.7796 1.8407 0.8038 1.7428 

efficientnetv2-m-21k-ft1k 0.8123 1.7155 0.8272 1.6419 
efficientnetv2-l-21k-ft1k 0.8208 1.6835 0.8362 1.6070 

resnet_v1_50 0.5738 2.6063 0.6156 2.4574 

inception_resnet_v2 0.5285 2.7369 0.5650 2.6074 
mobilenet_v2_100_224 0.6017 2.4797 0.6314 2.3816 

mobilenet_v2_130_224 0.6428 2.3377 0.6711 2.2513 

mobilenet_v2_140_224 0.6514 2.3042 0.6760 2.2242 
mobilenet_v3_small_075_224 0.6017 2.5138 0.6275 2.4327 

mobilenet_v3_small_100_224 0.6031 2.5107 0.6249 2.4346 

mobilenet_v3_large_075_224 0.6394 2.3872 0.6583 2.3222 
mobilenet_v3_large_100_224 0.6639 2.2711 0.6847 2.1958 

nasnet_mobile 0.4481 3.0582 0.4854 2.9341 

pnasnet_large 0.5404 2.6998 0.5536 2.6547 
bit_s-r50x1 0.6307 2.3735 0.6749 2.2246 
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Appendix A 

Fruits-262 dataset was divided into training data and 

validation data. 

• Training data are used to fit parameters (weights, 

biases, etc.) into the model. Models learn from examples 

by adjusting their weights and biases in order to 

minimize the loss function. The model's primary source 

of data is its training data, which allow it to identify 

patterns, relationships and generalizations, all of which 

can be used to predict data that has not yet been seen. 

 

• Validation data are separate examples that are not used 

during the training process. These data are used to assess 

the performance of the model during training and to 

check for overfitting. Overfitting occurs when the model 

becomes overly sensitive to noise and random 

fluctuations within the training data. This may lead to a 

poor generalization of the data. If necessary, 

hyperparameters can be adjusted to prevent overfitting. 
 

 

 

 

 

 


