
International Journal for Computers and Information, IJCI, Vol. 10 - 3, Oct. 2023 (Special Issue(

Proceedings of 2nd International Conference on Computers and Information, ICCI 2023 164

A Comparative Study of State-of-the-Art

Algorithms for Plant Recognition and Classification

on a Large Dataset

Sara Elhamouly1,Eman Meselhy2,Gamal Farouk3

Department of Computer Science, Faculty of Computers and Information, Menofia University, Menofia ,32511, Egypt

sara.elhamouly@ci.menofia.edu.eg1, eman.mohamed@ci.menofia.edu.eg2, gamal.elmetwali@ci.menofia.edu.eg3

Abstract— Plant classification and recognition is a vital task

for many applications including retail, agriculture, and food

processing. Several state-of the-art algorithms were developed in

order to address this challenge. While there are several papers that

were published to propose classification algorithms for plants and

fruits, these algorithms targeted small datasets with 10K or fewer

images. This study compares the performance of several Deep

Learning models in fruit and plant classification on a large plants

and fruits dataset with more than 225k images. This study aims to

guide researchers about the performance implications of using

popular models at large-scale by testing the scalability and

reliability of these models. Fruits-262 is a dataset of over 225k

images representing 262 different classes of plants and fruits. To

ensure fairness, we trained each model using the same runtime

environment on the Fruits-262 dataset. The models were evaluated

using four different evaluation metrics; accuracy, loss, validation

accuracy and validation loss. We also considered the

computational complexity, the training time and the model size in

order to evaluate the efficiency, reliability and scalability. Our

findings reveal that there are some models that can offer high

classification accuracy, yet with high computational resources and

long iterations. This paper explores some potential alternatives

and highlights some interesting models for future research.

Keywords—: Plants; Classification; Convolutional Neural

Networks; Comparisons; Analysis

1. INTRODUCTION

Artificial intelligence (AI) has revolutionized many fields

and industries. It has become one of the most important

technologies in recent years. AI applications provide

powerful tools for solving complex problems, enhancing

productivity and improving performance. Computer vision is

one of the domains in which AI has made great strides. This

subfield focuses on enabling computers to analyze and

interpret visual data such as videos and images.

Computer vision techniques are used in several types of

applications including fruit detection [1], fruit classification

[2], fruit grading [3], yield estimation [4] and disease

classification [5]. Image classification is a critical aspect of

computer vision. This involves assigning labels or categories

to images according to their content. This process is

especially relevant when it comes to fruit classification and

recognition since it can help with various agricultural

processes such as sorting and grading fruits or assessing their

quality [6].

Deep learning is a subset of AI that has been instrumental

in the advancement of computer vision techniques. It uses

artificial neural networks to learn complex patterns and

representations based on large amounts of data [7].

Convolutional Neural Networks (CNNs), in particular, have

become an effective methodology for image classification

tasks because of their ability to learn hierarchical feature-

representations from raw pixel data. Different CNN

architectures with different performance levels and

characteristics have been developed and proposed over the

recent few years.

In this paper, we compare the performance of plant

classification and recognition task for 28 state-of the-art

algorithms from the following families: EfficientNet, BiT,

ResNet, Inception-ResNet, PnasNet and MobileNet. We aim

that by evaluating and contrasting the algorithms on a large

dataset, we can provide valuable insight into their strengths,

weaknesses, and ultimately inform the selection of

algorithms appropriate for large-scale applications within the

computer vision field and plant recognition domain.

This paper is structured where section 2 reviews the

relevant literature while Section 3 discusses the methodology

used in this paper. The results are presented in Section 4 and

the limitations of this research are listed in Section 5. The

paper concludes with the Conclusions and Future Work in

Section 6.

2. RELATED WORK

Plant recognition and classification has been the focus of

several researchers in the last decade. Recent papers can be

divided into two large domains: feature-based methods and

deep learning-based methods. These two types are discussed

over the next subsections.

2.1. Feature-based Methods

The authors in [8] proposed a fruit classification system

that uses image features like color, shape, and texture. The

dimensions of the fruit images were reduced using Principal

Component Analysis (PCA) [9] before being fed into

classification algorithms like Fed-forward Neural Networks

(FNN) or Support Vector Machines (SVMs). The authors

used a small dataset that comprises 1,653 images from 18

different classes to test the model accuracy leading to a

conclusion that SVM had the highest accuracy at 88.2%.

International Journal for Computers and Information, IJCI, Vol. 10 - 3, Oct. 2023 (Special Issue(

Proceedings of 2nd International Conference on Computers and Information, ICCI 2023 165

However, the dataset did not include fruits or plants that had

been sliced, dried or partially covered.

In a recent study [12], the authors used Bayesian-

optimized Support Vector Machine and hybrid feature-based

Random Forest classifier to compare the performance and

accuracy of five different CNN models in detecting leaf

diseases of apples, corn, potatoes, tomatoes and rice plants.

The authors used a medium-size dataset containing 54k

images and they concluded that MobileNet-driven models

provide best accuracy at 96% in disease detection. However,

the authors didn’t demonstrate whether MobileNet models

will continue to show superior performance with large

datasets that incorporate higher number of classes.

Sandler and others [45] compared the performance of

MobileNet based models in conducting object detection and

classification activities. They compared the performance of

MobileNet on ImageNet and the large COCO dataset with

200k+ images. Their performance showed that MobileNetV2

was the most efficient model out of the selected models.

However, their work was limited to 6 models only and they

didn’t incorporate large set of models.

In a different study [10], the authors employed another

Random Forest approach (RF) combined with KNN for the

classification of three fruit types: Strawberry, Apples and

Oranges. The authors used Scale-Invariant Feature

Transform (SIFT) to extract features like shape, color and

scale. The results of their experiment were interesting and

showed that fruits with different shapes are harder to classify

than fruits with similar shapes. However, their experiment

was limited to 137 fruit images only.

In [11], the combination of machine-learning algorithms

and color space was used to classify Cape gooseberry

ripeness. The researchers used 925 images for both model

training and validation. They reported that SVM was the most

accurate machine learning classifier (70.14%) out of twelve

different classifiers. Their method was limited to a small

dataset and small coverage of algorithms. Multilayer neural

networks approach was used to classify a total of 100 tomato

images into large, medium and small classes along with four

grades in each class [3]. On such small dataset, the average

accuracy was 90.7%.

There are also a few studies which use images other than

RGB, such as Near Infrared (NIR), or multispectral images.

In [13], the authors proposed an in-field leaf-spectroscopy-

based Grapevine varieties classification method. They

collected leaves from 20 different types of grapevines and

measured the NIR spectrum of each leaf. The spectra from

these leaves were fed into a combination of two machine-

learning algorithms: Support vector machines (SVM), and

Artificial Neural Networks (ANN). Their method produced

an overall accuracy of 87.25%.

In [14], a classification of strawberry ripeness using

multispectral imagery of 17 bands is also proposed. The PCA

was used to reduce the size of the multispectral image's

features.

These papers were limited to small-to-medium size

datasets with fewer than 100k images or focused on small

number of classes in their classification algorithm which

made it difficult to generalize these models.

2.2. Deep-Learning Methods

Deep learning (DL), or deep neural networks, are derived

from the human brain. DL-based methods use a large neural

network with several layers, nodes and activation functions

[15]. Deep learning methods have become popular in recent

years and are widely used for image classification tasks.

Many works [10, 16 and 17] have reported promising results

using deep learning methods on the classification of fruit

images.

For example, [18] presented a lightweight CNN for the

classification of Fruit-360 dataset. This paper showed that

CNN performance is improved by adding additional features,

such as RGB color and histogram. Their method achieved the

highest accuracy of 93% in fruit classification. However, the

dataset they used for their research contains 3 fruit classes

only. Furthermore, [16] proposed an CNN model for

classification of fruits on the Fruit-360 dataset. This model

achieved a classification accuracy rate of 94.35%.

Fruits-360 dataset has become a popular reference for fruit

classification and recognition with its medium size (69k

images). [35] compared the performance and accuracy of

fourteen different deep learning-based models on this dataset

where MobileNet based models produced the best accuracy

rate.

Yu et al. [32] leveraged deep learning using the fastest

sensor in conjunction with a ResNet50 neural network to

detect fruits for a strawberry-picking robot. The analysis

results obtained in this study achieved an accuracy of

95.78%.

VGG-16 architectures have become popular in plant

classification and disease detection [34]. Fuentes et al. [33]

compared the three types of sensor families with respect to

different architectures and achieved better results with VGG-

16 architecture together with R-CNN, which is faster

compared to CNN, together with the

On the other hand, [19] proposed a lightweight CNN

model for fruit and plant classification on two different

datasets with a comparison to a fine-tuned VGG-16 [20]

model. This method had a classification accuracy between

99.49% for dataset-1 and 85.43% in dataset-2.

Deep learning methods developed toward video capturing

as well where [21] proposed a classifier to categorize fruits in

retail stores using video captured with the installed camera.

The researchers used two convolutional networks;

InceptionV3 [20] and MobileNet [22], to detect and classify

vegetables and fruits on video. InceptionV3 achieved the

highest accuracy (76%) for a ten-class dataset of fruits.

As discussed in the literature review, researchers tend to

use smaller datasets in evaluating the performance of

machine learning models. However. industries aim to deploy

machine learning algorithms at large-scale where huge

amounts of data are expected to be processed. Also, research

papers that compares the performance of deep-learning

models tend to focus on relatively small number of models in

their comparisons. This paper focuses on addressing these

gaps by comparing the performance of 28 models from the

most popular model-families on a large dataset with 225k+

images.

International Journal for Computers and Information, IJCI, Vol. 10 - 3, Oct. 2023 (Special Issue(

Proceedings of 2nd International Conference on Computers and Information, ICCI 2023 166

3. METHODOLOGY

3.1. Selected Models and Architectures

This paper compares several AI and DL algorithms from

the following families: EfficientNet, ResNet, Inception

ResNet, MobileNet, NAS and BiT. Over the upcoming few

subsections, these families are discussed in detail.

3.1.1. EfficientNet

EfficientNet is a family of Convolutional Neural Networks

(CNNs), which are designed using compound scaling to

balance depth, width and resolution [23].

1. EfficientNet-B0: This is the base model that

serves as a basis for all other models with the

architecture shown in Figure 1. This is the

smallest and the least computationally expensive

model in the family. EfficientNet-B0 offers a

lower level of accuracy than the larger models.

2. EfficientNet-B1 to EfficientNet-B7: These are

enlarged versions of the base (B0) model, created

by compound scaling. Compound scaling is a

method that scales network width, depth and

input resolution simultaneously to improve

performance without increasing computational

costs. The accuracy and network size increase as

the model number (from B1 to B7) increases.

3.1.2. ResNet (Residual Networks)

ResNet is a CNN architecture that uses residual

connections (skip connection) to solve the problem of

vanishing gradients in deep networks [24]. ResNets come in

different depths such as ResNet50, ResNet101 and

ResNet152.

3.1.2. ResNet (Residual Networks)

ResNet is a CNN architecture that uses residual

connections (skip connection) to solve the problem of

vanishing gradients in deep networks [24]. ResNets come in

different depths such as ResNet50, ResNet101 and

ResNet152. The various ResNet algorithms are typically

identified by the number of layers in the network. Some

common ResNet architectures include:

1. ResNet-18: This architecture consists of 18 layers.

This architecture includes 5 stages, each with 2

convolutional layers and a pooling layer, as well as 2

fully-connected layers. There are 8 blocks of residual

layers, each with 2 convolutional layers.

2. ResNet-34: This model contains 34 layers. It includes

5 stages, each with 2 convolutional layers and a

pooling layer, as well as 2 fully connected layers. The

model has 16 blocks of residual layers, each with 2

convolutional layers.

3. ResNet-50: This model is an architecture that consists

of 50 layers, and instead of using the usual 2-layer

residual block, it uses bottleneck blocks. These blocks

consist of 3 convolutional layers (1x1, 1x3, and 2x1)

instead. ResNet-34 uses bottleneck blocks to reduce

complexity and parameters. Figure 2 shows a sample

architecture for the ResNet-50 model.

4. ResNet-101: ResNet-50 is a model with 101 layers. It

follows a similar architecture, but has fewer

bottleneck blocks. This change results in increased

capacity and depth.

5. ResNet-152: This architecture consists of 152 layers.

It uses bottleneck residual blocks again, but has an

even greater number of blocks compared to ResNet-

101, increasing the depth and capability of the

network

Fig.1 Architecture of EfficientNet-B0 Image taken from [39]

Fig. 2 Sample ResNet50 Model Architecture. Image taken from [40]

International Journal for Computers and Information, IJCI, Vol. 10 - 3, Oct. 2023 (Special Issue(

Proceedings of 2nd International Conference on Computers and Information, ICCI 2023 167

All ResNet architectures share the same design principles.

For example, they use residual connections to allow the

network to learn residual functions. Also, ResNet

architectures are capable of performing at the highest level on

a variety of computer vision tasks including object detection,

image classification and segmentation. The choice of ResNet

models depends on the balance required between accuracy

and computational power for a particular task. ResNet models

can be combined with other models as well. For example,

[32] combined ResNet with Fast Fourier models to establish

a new Fast Fourier Convolutional ResNet (FFC-ResNet).

3.1.3. Inception ResNet

Inception ResNet is a family of hybrid architectures that

combines ideas from both the Inception and ResNet

architectures [25]. This architecture was introduced by

researchers at Google. The key components of this model are:

Inception modules: are the basic building blocks

of the Inception architecture. Inception modules

are composed of parallel convolutional branches,

each with a different filter size and operation,

such as 3x3, 5x5, and 1x1 convolutions. These

branches' outputs are then concatenated together

to create the module's final output. This design

allows the network to be wider and capture

information on multiple scales at each layer.

Residual connections: The ResNet architecture's

primary innovation is the use residual

connections, also known as a skip connection.

This allows the network to learn residual

functions while reducing the problem of

vanishing gradients in deep networks. In

Inception ResNet, residual blocks are created by

combining Inception modules with residual

connections. This enhances the learning

capability and convergence of the networks.

Inception-ResNet has two main variations:

1. Inception ResNet-V1: This variant was built by

incorporating the residual connections in

Inception-V3 architecture [25]. It has the same

complexity and depth as Inception-V3, but with

a faster convergence rate and slightly better

performance.

2. Inception ResNet-V2: This version is based on

a more advanced Inception-V4 architecture.

Inception ResNet-V2 is more complex and has a

deeper design than Inception ResNet-V1 [25].

This complexity results in better performance for

image classification tasks.

Inception-ResNet has demonstrated the best performance

in various computer vision tasks such as object detection,

image classification and segmentation with an architecture as

shown in Figure 3. These results were achieved while

maintaining an appropriate balance between model size and

computational resources.

3.1.4. MobileNet (Mobile Networks)

MobileNet is a lightweight CNN family designed for

embedded and mobile devices where computational

resources and power consumption are limited. MobileNets

are based on depth-separable convolutions which reduces the

complexity and number of parameters compared to

conventional CNNs [26]. The success of MobileNets comes

from a belief that the model size is not a necessity for

achieving better results. This has shown tremendous success

in various experiments as shown in [12] and [35]. There are

several variations of MobileNet models including:

1. MobileNet-V1: The first MobileNet version,

developed by Google researchers, is based upon the

concept of depth-wise separate convolutions. The

standard convolution is replaced by two separate

operations, depth-wise (which applies convolution

filters to each channel separately) and point-wise

(which combines the outputs from depth-wise

convolutions with 1x1 convolutions). This design

reduces the computational complexity and number of

parameters compared to conventional CNN

architectures.

Fig.3 Inception ResNet Model Architecture. Image taken from [41]

Fig.4 Mobile-V2 Building Blocks. Image taken from [42]

International Journal for Computers and Information, IJCI, Vol. 10 - 3, Oct. 2023 (Special Issue(

Proceedings of 2nd International Conference on Computers and Information, ICCI 2023 168

2. MobileNet-V2: MobileNet-V2 is the second version,

which builds on MobileNet-V1 with inverted residual

blocks. It also introduces linear bottlenecks and

inverted residual blocks that are Rest-Net like

structures, with input and output channels in reverse

order. The linear bottleneck consists of a convolution

layer 1x1, which reduces the channels without

introducing nonlinearities. This helps preserve the

information in the network. MobileNet-V2 is a model

that improves efficiency and performance compared

to MobileNet-V1 [26]. Figure 4 shows the main

building blocks of MobileNet-V2

3. MobileNet-V3: The latest version of MobileNet and

it combines architectural innovations from

MobileNet-V2 with advanced search techniques such

as Neural Architecture Search (NAS), NetAdapt, and

other similar algorithms.

3.1.5. NASNet (Neural Architecture Search Networks)

NASNet models were invented by researchers at Google

Brain while researching Neural Architecture Search (NAS)

[27]. NAS offers automated methods to design high-

performance neural networks. These automated methods use

reinforcement learning to search for the optimal architecture

by training and evaluating numerous candidate architectures

on a given dataset.

Figure 5 illustrates the main building blocks of NAS.

There are several examples of NASNet models. For instance,

1. NASNet-A is the original NASNet discovered

by NAS. It achieved the best possible

performance on ImageNet dataset for image

classification tasks. This model is

computationally costly and therefore not

suitable for devices with limited resources.

2. NASNet-Mobile is a smaller and more efficient

version NASNet-A. It was designed specifically

for mobile and embedded devices. It has a

similar architecture to NASNet-A, but with

reduced width and depth. This minimization

results in a smaller number of parameters.

3. PNASNet uses more advanced version of

NAS,called Progressive NAS (PNAS) to

provide better results for large datasets.

3.1.6. BiT (Big Transfer Networks)

The BiT family is a collection of pre-trained CNNs that

uses transfer learning in order to achieve high performance

for various computer vision tasks [28]. BiT networks can

classification, or segmentation.

 The BiT network architecture is based on ResNet, but the

innovation comes from the pre-training method. Researchers

pre-trained the models using a large dataset (ImageNet-21k

containing over 14,000,000 images), and then fine-tuned

their performance on smaller datasets. Figure 6 shows the

model architecture for BiT-CNN.

The key principles that have led to BiT's success include:

1. Scale: BiT is trained on large datasets, which allows

them to learn more features and generalize better

across tasks.

2. Architecture: BiT uses the ResNet architecture

which has been proven effective in a variety of an

object identification tasks. Researchers used different

depths (e.g., ResNet-50 ResNet-101 ResNet-152) in

order to examine the impact of architectural choices

on transfer learning.

3. Fine-tuning: BiT models can be fine-tuned using

task-specific datasets by following a simple but

effective strategy. This strategy uses a large batch size

and extensive data augmentation to allow the models

to quickly adapt to new tasks.

Fig.5 NAS Building Blocks. Image taken from [43]

Fig.6 BIT-CNN Architecture. Image taken from [44]

International Journal for Computers and Information, IJCI, Vol. 10 - 3, Oct. 2023 (Special Issue(

Proceedings of 2nd International Conference on Computers and Information, ICCI 2023 169

This paper selected the most prominent algorithms from

each of the families described earlier. Table 1 lists all the

selected models and their respective families. The model

names reflect important information about the model such as

family name, model base, model version, size of the dataset

that the model was pre-trained on (if any), fine-tuning

parameters for the pre-trained model (if applicable), number

of model layers, depth of the model, and whether the input

images are resized to small, medium, large or specified width

by height. All selected models were run in 5 different epochs

and the performance for each epoch was captured. More

details are discussed in the results section.

4. RESULTS AND DISCUSSION

4.1.Dataset

Fruits-262 dataset was created to improve the process of

fruit classification [29]. This dataset is selected due to its

large size (225k+ images). Fruit-262 contains a vast majority

of the popular and known plants and fruits. Due to the

extensive and large number of images for each class (861

images/class), the leveraged models will offer high-accuracy

for plant and fruit classification. Below are the statistics for

the selected dataset.

1. Total number of images: 225,640 images

2. Number of classes: 262 fruits and plants

3. Average number of images for each

label/class: 861 images

4. Average image width: 213 pixels

5. Average image height: 262 pixels

All the plant and fruit classes were investigated to ensure

enough number of samples is available for each class.

Figure 7 shows the distribution of input images for sample

classes in the dataset.

Fig.7 Input Data Distribution for Sample Classes in the Fruits-262

Dataset

4.2 Run-time Environment

All the models were run on Google Colab Pro to ensure

fairness. Every model used 2 vCPUs with 32 GB RAM, 15

GB persistent storage and a GPU. In addition, TensorFlow

was used to implement each model using Keras library.

4.3 Evaluation Metrics

In evaluating selected models, the dataset was divided into

two categories: training data and validation data. Appendix A

defines the terminologies of training and validation data. In

general, TensorFlow models use 4 main metrics to evaluate

and monitor their performance. These metrics have been

widely used in several research papers such as [36] and [45].

1. Accuracy measures the percentage of

predictions that are correct. The number of

correct forecasts divided by the total number is

used to calculate it. TensorFlow's accuracy is

usually used to solve classification problems.

The goal is to determine the correct input class or

category. Accuracy is calculated as the ratio of

correct predictions to the total number of

predictions:

t

c

N

N
=Accuracy (1)

 where NC is the number of correct of predictions

and Nt is the total number of predictions

2. Loss is also called the objective function or cost

function. It measures the difference between the

predictions of the model and the ground truth

labels. The loss function quantifies errors in

model predictions and is used to guide the

training process. Training is aimed at minimizing

the loss through the adjustment of the model

parameters. TensorFlow uses the Mean Squared

error (MSE) to solve regression problems, and

Cross-Entropy loss for classification problems.

 Cross Entropy = (−
1

𝑁
) ∗ ∑ ytrue ∗

𝑁

𝑖=1

 log 𝑦𝑝𝑟𝑒𝑑 + (1 − 𝑦𝑡𝑟𝑢𝑒) ∗

 log(1 − 𝑦𝑝𝑟𝑒𝑑) (2)

Equation cited from [46]

where N is the number of samples, ytrue represents

the true labels and ypred represents the model's

predicted probabilities.

3. Validation Loss is calculated based on a

validation dataset that is separate from the

training data. The validation dataset is used to

monitor overfitting and evaluate the model on

new data. The validation loss may be high for a

model with low training loss. This indicates that

the model has learned to memorize the training

data but is not able to generalize it well.

4. Validation Accuracy is the accuracy metric that

is calculated using the validation dataset. It is

also used to monitor overfitting and evaluate the

model performance when using unseen data. A

high validation accuracy is a sign that the model

generalizes and will perform well with new data.

 Validation Accuracy = Ncv / Ntv (3)

International Journal for Computers and Information, IJCI, Vol. 10 - 3, Oct. 2023 (Special Issue(

Proceedings of 2nd International Conference on Computers and Information, ICCI 2023 170

Where Ncv is the number of correct predictions on

validation data and Ntv is the total number of correct

predictions on validation data

When evaluating model performance, the following rules

apply:

1. If Validation Loss is increasing and Validation

Accuracy is decreasing, the model is cramming

values and not learning.

2. If Validation Loss is increasing and Validation

Accuracy is increasing, this can happen due to

overfitting.

3. If Validation Loss is decreasing and Validation

Accuracy is increasing, the model is learning and

working fine.

There are other evaluation metrics that could be used

such as F1-score, precision and recall. In the next sub-

section, the experiment results will be presented and

explained further.

4.4. Experiment Results

Running the models at large-scale for industrial purposes

require continue retraining for the model based on incoming

data. Therefore, the time spent for each epoch must be

reasonable. While the term “reasonable” has subjectivity in

its definition, the authors have identified that ~ 1 hour/epoch

for such dataset. As a result, some algorithms were identified

for their insufficient performance and limited scalability.

These models are: efficientnet_b5, efficientnet_b6,

efficientnet_b7 and pnasnet_large. Every epoch in these 3

models took over 90 minutes (over 7.5 hours for 5 epochs)

and therefore, they can’t provide good performance at large-

scale operation. Therefore, these models will be excluded

from future comparisons.

Table 2 shows the full time spent/epoch for each model (in

minutes). It’s worth noting that longer execution times

doesn’t imply higher accuracy.

To prove this assumption, pnasnet_large model was

included in the list of models that were compared. Therefore,

Table 3 shows the comparison results for the selected models

on the Fruits-262 dataset when trained for 5 different

iterations (epochs). The results indicate that efficientnetv2-l-

21k-ft1k has the highest accuracy and validation accuracy

scores (and lowest loss and validation loss) while

nasnet_mobile has the lowest validation accuracy and highest

validation loss scores.

The validation accuracy scores for all models are

illustrated in Figure 8. Figure 8 shows that efficientnetv2-l-

21k-ft1k model is the best model. This model is an

EfficientNet-V2 model that is pre-trained on a 21k image

dataset and fine-tuned on a 1k image datasets. All input

images to the model are resized to large size. The model

efficientnetv2-l-21k-ft1k consumes a lot of resources due to

its need to resize all images to large size. The model size is ~

428MB [30]. Therefore, there is a need for large-cluster to

run such heavy processing.

A good compromise is offered by the efficientnetv2-m-

21k-ft1k model. This model is an EfficientNet-V2 model that

is pre-trained on a 21k image dataset and fine-tuned on a 1k

image datasets. All input images to the model are resized to

medium size. Due to the smaller resize, the model size is

191MB only (56% less size than efficientnetv2-l-21k-ft1k).

In addition, the average epoch length for efficientnetv2-l-

21k-ft1k is 40.5 minutes while the average epoch length for

efficientnetv2-m-21k-ft1k is 30 minutes with around 25%

time saving.

Table 1. Selected Models and their respective families

Model Family Selected Model(s) Notes

EfficientNet

efficientnet_b0 V1 of EfficientNet with base of 0

efficientnet_b1 Similar to efficientnet_b0 with base of 1

efficientnet_b2 Similar to efficientnet_b0 with base of 2

efficientnet_b3 Similar to efficientnet_b0 with base of 3

efficientnet_b4 Similar to efficientnet_b0 with base of 4

efficientnet_b5 Similar to efficientnet_b0 with base of 5

efficientnet_b6 Similar to efficientnet_b0 with base of 6

efficientnet_b7 Similar to efficientnet_b0 with base of 7

efficientnetv2-b0 V2 of EfficientNet with base of 0

efficientnetv2-b1 Similar to efficientnetv2_b0 with base of 1

efficientnetv2-b2 Similar to efficientnetv2_b0 with base of 2

efficientnetv2-b3 Similar to efficientnetv2_b0 with base of 3

efficientnetv2-s EfficientNet V2 trained on 1k images resized to small size

efficientnetv2-s-21k-ft1k
EfficientNet V2 trained on 21k image and fine tuned on 1k images. All
images are resized to small size

efficientnetv2-m-21k-ft1k Similar to efficientnetv2-s-21k-ft1k but all images are resized to medium size

efficientnetv2-l-21k-ft1k Similar to efficientnetv2-s-21k-ft1k but all images are resized to a large size

ResNet resnet_v1_50 ResNet model with 50 layers
Inception ResNet inception_resnet_v2 Inception ResNet-V2 model

MobileNet

mobilenet_v2_100_224 V2 of MobileNet with images resized to 100 x 224

mobilenet_v2_130_224 V2 of MobileNet with images resized to 130 x 224
mobilenet_v2_140_224 V2 of MobileNet with images resized to 140 x 224

mobilenet_v3_small_075_224 V3 of MobileNet with small depth and images resized to 75 x 224

mobilenet_v3_small_100_224 V3 of MobileNet with small depth and images resized to 100 x 224
mobilenet_v3_large_075_224 V3 of MobileNet with large depth and images resized to 75 x 224

mobilenet_v3_large_100_224 V3 of MobileNet with large depth and images resized to 100 x 224

NASNet
nasnet_mobile NASNet Mobile model
pnasnet_large Progressive NASNet model prepared for large dataset

BiT bit_s-r50x1 BiT small model based on ResNet_v2_50

International Journal for Computers and Information, IJCI, Vol. 10 - 3, Oct. 2023 (Special Issue(

Proceedings of 2nd International Conference on Computers and Information, ICCI 2023 171

On the other hand, the pnasnet_large model had the highest

growth potential among all selected model although each

epoch took over 2 hours (the longest among all selected

models).

5. LIMITATIONS

This paper compared the performance of 28 models from

different families. Despite the large number of models, there

are several models that were not included in this experiment.

For example, AlexNet and GoogleNet families were not

included in this paper. Also, four evaluation metrics were

used to evaluate these models. Other evaluation metrics

should be included and can provide additional insights such

as F1-score, precision and recall.

6. CONCLUSION AND FUTURE WORK

As the world evolves toward Artificial General

Intelligence (AGI), there is a need to generalize algorithms

and models to serve multiple purposes efficiently. In this

paper, the authors explored popular machine learning

algorithms that tend to perform well on small to medium size

datasets. Some of these models didn’t perform well on a large

scale.

In conclusion, this paper compared the performance of

several deep-learning models from several families on the

large Fruits-262 dataset. These models tend to classify

images with high-accuracy when applied on small-to-

medium size datasets.

Through an extensive literature review, the authors

discussed the latest developments in plant and fruit

classification, the selected models, and performance

comparison studies.

In the methodology section, the authors outlined the data

pre-processing, augmentation techniques and training

strategies employed by each model. The performance of these

models was then evaluated using metrics like accuracy, loss,

validation accuracy and validation loss. The scores for

validation accuracy were also visualized.

The study identified a few models with faster execution

and superior results that could be used at large scale. Several

models didn’t retain high levels of accuracy when applied to

large datasets (e.g., resnet, mobilenet and bit families). Our

findings revealed that efficientnetv2-l-21k-ft1k has the best

accuracy and validation accuracy. Due to its large size,

efficientnetv2-m-21k-ft1k can be used as an alternative

model given its lower size and faster execution time. The

pnasnet_large was also identified as having a higher potential

for higher numbers of iterations, despite its relatively long

learning time.

In the future, this comparison needs to be implemented

with higher number of epochs (iterations) with investigation

to the models that showed higher potential (e.g.,

pnasnet_large). Furthermore, there is a need to explore the

underlying reasons that prevented models like resnet and

mobilenet from performing at the same accuracy offered at

smaller datasets. Finally, the comparison results shown don’t

reflect an ideal model that can offer best accuracy with low

consumption of resources. Therefore, the development of a

new model that achieves this balance is highly needed.

Table 2. Execution Times in minutes for selected models over 5 epochs

Model 1st Epoch 2nd Epoch 3rd Epoch 4th Epoch 5th Epoch

efficientnet_b0 14.95 14.36667 14.31667 14.36667 14.31667

efficientnet_b1 19.75 19.88333 19.63333 19.55 19.56667

efficientnet_b2 24.48333 24.18333 24.25 24.21667 24.16667
efficientnet_b3 36.83333 36.53333 36.5 36.56667 36.45

efficientnet_b4 67.01667 66.43333 66.4 66.33333 65.55

efficientnet_b5 90+ 90+ 90+ 90+ 90+
efficientnet_b6 90+ 90+ 90+ 90+ 90+

efficientnet_b7 90+ 90+ 90+ 90+ 90+

efficientnetv2-b0 24.71667 23.45 23.2 23.18333 23.21667
efficientnetv2-b1 27.28333 26.55 26.78333 26.61667 26.95

efficientnetv2-b2 31.71667 32.35 32.21667 31.73333 32.7

efficientnetv2-b3 43.83333 43.45 42.81667 43.4 43.41667
efficientnetv2-s 58.78333 58.3 58.33333 58.45 58.7

efficientnetv2-s-21k-ft1k 16.45 16.21667 16.21667 16.2 16.16667

efficientnetv2-m-21k-ft1k 30.25 29.93333 29.93333 29.93333 29.85
efficientnetv2-l-21k-ft1k 41.11667 40.63333 40.61667 40.56667 40.46667

resnet_v1_50 30.25 29.15 29.03333 28.53333 28.88333

inception_resnet_v2 67.9666 67.4166 67.56666 68.6833 67.6833
mobilenet_v2_100_224 24.48333 25.23333 25.3 24.15 24.45

mobilenet_v2_130_224 13.83333 13.31667 13.23333 13.2 13.4

mobilenet_v2_140_224 13.86667 13.76667 13.73333 13.53333 13.43333
mobilenet_v3_small_075_224 11.61667 11.26667 11.26667 11.31667 11.43333

mobilenet_v3_small_100_224 11.46667 11.53333 11.61667 11.91667 11.7

mobilenet_v3_large_075_224 12.13333 11.85 11.88333 12.01667 12.13333
mobilenet_v3_large_100_224 12.48333 12.46667 12.55 12.66667 12.56667

nasnet_mobile 26.08333 25.23333 24.73333 25.13333 25.61667
pnasnet_large 124.2 123.8667 123.5833 123.7167 122.0167

bit_s-r50x1 30.68333 30.31667 30.28333 30.28333 30.33333

International Journal for Computers and Information, IJCI, Vol. 10 - 3, Oct. 2023 (Special Issue(

Proceedings of 2nd International Conference on Computers and Information, ICCI 2023 172

Table 3. Model Evaluation Metrics (for 5 epoch-run) - with highlights for the most accurate and least accurate

Figure. 8 Validation Accuracy Scores across Selected Models over 5 Training Epochs on the Fruits-262 Dataset

Model Accuracy Loss Validation Accuracy Validation Loss

efficientnet_b0 0.6271 2.4530 0.6581 2.3527

efficientnet_b1 0.6246 2.4513 0.6570 2.3453

efficientnet_b2 0.6213 2.4764 0.6497 2.3818
efficientnet_b3 0.6408 2.3967 0.6639 2.3140

efficientnet_b4 0.6259 2.4882 0.6461 2.4170

efficientnetv2-b0 0.5263 2.8541 0.5720 2.6892
efficientnetv2-b1 0.5335 2.8349 0.5815 2.6620

efficientnetv2-b2 0.5251 2.8746 0.5645 2.7255

efficientnetv2-b3 0.5671 2.7012 0.6042 2.5694
efficientnetv2-s 0.6021 2.5822 0.6257 2.5010

efficientnetv2-s-21k-ft1k 0.7796 1.8407 0.8038 1.7428

efficientnetv2-m-21k-ft1k 0.8123 1.7155 0.8272 1.6419
efficientnetv2-l-21k-ft1k 0.8208 1.6835 0.8362 1.6070

resnet_v1_50 0.5738 2.6063 0.6156 2.4574

inception_resnet_v2 0.5285 2.7369 0.5650 2.6074
mobilenet_v2_100_224 0.6017 2.4797 0.6314 2.3816

mobilenet_v2_130_224 0.6428 2.3377 0.6711 2.2513

mobilenet_v2_140_224 0.6514 2.3042 0.6760 2.2242
mobilenet_v3_small_075_224 0.6017 2.5138 0.6275 2.4327

mobilenet_v3_small_100_224 0.6031 2.5107 0.6249 2.4346

mobilenet_v3_large_075_224 0.6394 2.3872 0.6583 2.3222
mobilenet_v3_large_100_224 0.6639 2.2711 0.6847 2.1958

nasnet_mobile 0.4481 3.0582 0.4854 2.9341

pnasnet_large 0.5404 2.6998 0.5536 2.6547
bit_s-r50x1 0.6307 2.3735 0.6749 2.2246

International Journal for Computers and Information, IJCI, Vol. 10 - 3, Oct. 2023 (Special Issue(

Proceedings of 2nd International Conference on Computers and Information, ICCI 2023 173

References

[1] A. Koirala, K. B. Walsh, Z. Wang, and C. McCarthy, "Deep learning for
real-time fruit detection and orchard fruit load estimation: benchmarking of

‘MangoYOLO’," Precision Agriculture, vol. 20, no. 6, pp. 1107-1135,

2019/12/01 2019.
[2] Y. Zhang, S. Wang, G. Ji, and P. Phillips, "Fruit classification using

computer vision and feedforward neural network," Journal of Food

Engineering, vol. 143, pp. 167-177, 2014/12/01/ 2014.
[3] L. Liu, Z. Li, Y. Lan, Y. Shi, and Y. Cui, "Design of a tomato classifier

based on machine vision," PLOS ONE, vol. 14, no. 7, p. e0219803, 2019.

[4] J. Shook, T. Gangopadhyay, L. Wu, B. Ganapathysubramanian, S.
Sarkar, and A. K. Singh, "Crop yield prediction integrating genotype and

weather variables using deep learning," PLOS ONE, vol. 16, no. 6, p.

e0252402, 2021.
[5] E. Khan, M. Z. U. Rehman, F. Ahmed, and M. A. Khan, "Classification

of Diseases in Citrus Fruits using SqueezeNet," in 2021 International

Conference on Applied and Engineering Mathematics (ICAEM), 30-31 Aug.

2021 2021, pp. 67-72.

[6] F. Wang et al., "Residual Attention Network for Image Classification,"

in 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 21-26 July 2017 2017, pp. 6450-6458.

[7] T. B. Shahi, C. Sitaula, A. Neupane, and W. Guo, "Fruit classification

using attention-based MobileNetV2 for industrial applications," (in eng),
PLoS One, vol. 17, no. 2, p. e0264586, 2022.

[8] Y. Zhang, S. Wang, G. Ji, and P. Phillips, "Fruit classification using

computer vision and feedforward neural network," Journal of Food
Engineering, vol. 143, pp. 167-177, 2014/12/01/ 2014.

[9] H. Abdi and L. J. Williams, "Principal component analysis," WIREs
Computational Statistics, vol. 2, no. 4, pp. 433-459, 2010/07/01 2010.

[10] H. M. Zawbaa, M. Hazman, M. Abbass, and A. E. Hassanien,

"Automatic fruit classification using random forest algorithm," in 2014 14th
International Conference on Hybrid Intelligent Systems, 14-16 Dec. 2014

2014, pp. 164-168.

[11] W. Castro, J. Oblitas, M. De-La-Torre, C. Cotrina, K. Bazán, and H.
Avila-George, "Classification of Cape Gooseberry Fruit According to its

Level of Ripeness Using Machine Learning Techniques and Different Color

Spaces," IEEE Access, vol. 7, pp. 27389-27400, 2019.
[12] A. K. Singh, S. V. N. Sreenivasu, U. S. B. K. Mahalaxmi, H. Sharma,

D. D. Patil, and E. Asenso, "Hybrid Feature-Based Disease Detection in

Plant Leaf Using Convolutional Neural Network, Bayesian Optimized SVM,
and Random Forest Classifier," Journal of Food Quality, vol. 2022, p.

2845320, 2022/02/10 2022.

[13] S. Gutiérrez, J. Tardaguila, J. Fernández-Novales, and M. P. Diago,
"Support Vector Machine and Artificial Neural Network Models for the

Classification of Grapevine Varieties Using a Portable NIR

Spectrophotometer," PLOS ONE, vol. 10, no. 11, p. e0143197, 2015.
[14] C. Liu et al., "Application of multispectral imaging to determine quality

attributes and ripeness stage in strawberry fruit," (in eng), PLoS One, vol. 9,

no. 2, p. e87818, 2014.
[15] J. Schmidhuber, "Deep learning in neural networks: an overview," (in

eng), Neural Netw, vol. 61, pp. 85-117, Jan 2015.

[16] J. L. Joseph, V. A. Kumar, and S. P. Mathew, "Fruit classification using
deep learning," 2021: Springer, pp. 807-817.

[17] H. Mureşan and M. Oltean, "Fruit recognition from images using deep

learning," Acta Universitatis Sapientiae, Informatica, vol. 10, no. 1, pp. 26-

42, 2018.

[18] J. L. Rojas-Aranda, J. I. Nunez-Varela, J. C. Cuevas-Tello, and G.

Rangel-Ramirez, "Fruit Classification for Retail Stores Using Deep
Learning," in Pattern Recognition, vol. 12088: © Springer Nature

Switzerland AG 2020., 2020, pp. 3-13.

[19] M. S. Hossain, M. Al-Hammadi, and G. Muhammad, "Automatic Fruit
Classification Using Deep Learning for Industrial Applications," IEEE

Transactions on Industrial Informatics, vol. 15, no. 2, pp. 1027-1034, 2019.

[20] K. Simonyan and A. Zisserman, "Very deep convolutional networks for
large-scale image recognition," arXiv preprint arXiv:1409.1556, 2014.

[21] F. Femling, A. Olsson, and F. Alonso-Fernandez, "Fruit and Vegetable

Identification Using Machine Learning for Retail Applications," in 2018
14th International Conference on Signal-Image Technology & Internet-

Based Systems (SITIS), 26-29 Nov. 2018 2018, pp. 9-15.

[22] S. Chakraborty, F. M. J. M. Shamrat, M. M. Billah, M. A. Jubair, M.
Alauddin, and R. Ranjan, "Implementation of Deep Learning Methods to

Identify Rotten Fruits," in 2021 5th International Conference on Trends in

Electronics and Informatics (ICOEI), 3-5 June 2021 2021, pp. 1207-1212.

[23] M. Tan and Q. Le, "Efficientnet: Rethinking model scaling for
convolutional neural networks," 2019: PMLR, pp. 6105-6114.

[24] K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image

recognition," 2016, pp. 770-778.
[25] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi, "Inception-v4,

inception-resnet and the impact of residual connections on learning," 2017,

vol. 31, 1 ed.
[26] A. G. Howard et al., "Mobilenets: Efficient convolutional neural

networks for mobile vision applications," arXiv preprint arXiv:1704.04861,

2017.
[27] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, "Learning transferable

architectures for scalable image recognition," 2018, pp. 8697-8710.

[28] A. Kolesnikov et al., "Big transfer (bit): General visual representation
learning," 2020: Springer, pp. 491-507.

[29] M.-D. Minuţ and A. Iftene, "Creating a dataset and models based on

convolutional neural networks to improve fruit classification," 2021: IEEE,
pp. 155-162.

[30] EfficientNetV2 ImageNet21k-FT1k-Large. TensorFlow Hub. Accessed

on May 10, 2023. Available from
(https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_ft1k_l/cla

ssification/2

[31] EfficientNetV2 ImageNet21k-FT1k-Medium. TensorFlow Hub.
Accessed on May 10, 2023. Available from

https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_ft1k_m/cla

ssification/2.
[32] Y. Yu, K. Zhang, L. Yang, and D. Zhang, "Fruit detection for strawberry

harvesting robot in non-structural environment based on Mask-RCNN,"
Computers and Electronics in Agriculture, vol. 163, p. 104846, 2019/08/01/

2019.

[33] A. Fuentes, S. Yoon, S. C. Kim, and D. S. Park, "A robust deep-
learning-based detector for real-time tomato plant diseases and pests

recognition," Sensors, vol. 17, no. 9, p. 2022, 2017.

[34] R. Sujatha, J. M. Chatterjee, N. Z. Jhanjhi, and S. N. Brohi,
"Performance of deep learning vs machine learning in plant leaf disease

detection," Microprocessors and Microsystems, vol. 80, p. 103615,

2021/02/01/ 2021.
[35] V. L. Narla and G. Suresh, "Multiple Feature-Based Tomato Plant Leaf

Disease Classification Using SVM Classifier," 2023: Springer, pp. 443-455.

[36] R. Siddiqi, "Comparative performance of various deep learning based
models in fruit image classification," 2020, pp. 1-9.

[37] K. Ramamurthy, A. R. Varikuti, B. Gupta, and N. Aswani, "A deep

learning network for Gleason grading of prostate biopsies using
EfficientNet," (in eng), Biomed Tech (Berl), vol. 68, no. 2, pp. 187-198, Apr

25 2023.

[38] A. Zhou et al., "Multi-head attention-based two-stream EfficientNet for
action recognition," Multimedia Systems, vol. 29, no. 2, pp. 487-498, 2023.

[39] T. Ahmed and N. H. N. Sabab, "Classification and understanding of

cloud structures via satellite images with EfficientUNet," SN Computer
Science, vol. 3, pp. 1-11, 2022.

[40] W. Yu and M. Nishio, "Multilevel Structural Components Detection and

Segmentation toward Computer Vision-Based Bridge Inspection," Sensors,
vol. 22, no. 9, p. 3502, 2022.

[41] Sharma, Vibhaakar, Swathi Gangaraju, and Vishal K. Sharma. "Masked

face recognition." (2019): 1-7. Accessed on May 10. Available from
http://cs230.stanford.edu/projects_winter_2021/reports/70747149.pdf.

[42] Badgujar, S. (2021, July 30). Creating mobilenetsv2 with tensorflow

from scratch. Medium. https://medium.com/analytics-vidhya/creating-
mobilenetsv2-with-tensorflow-from-scratch-c85eb8605342. Accessed on

May 10.

[43] Gupta, A. (2021, May 5). Neural Architecture Search. Medium.
https://ag7982.medium.com/neural-architecture-search-nas-49d378fa04fe.

Accessed on May 10.

[44] H. Lee and M. Shin, "Learning Explainable Time-Morphology Patterns
for Automatic Arrhythmia Classification from Short Single-Lead ECGs,"

Sensors, vol. 21, no. 13.

[45] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
"Mobilenetv2: Inverted residuals and linear bottlenecks," 2018, pp. 4510-

4520.

[46] The cross-entropy cost function. (2023, June 6). Y Combinator
Research. https://eng.libretexts.org/@go/page/3752. Accessed on May 10.

https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_ft1k_m/classification/2
https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_ft1k_m/classification/2
http://cs230.stanford.edu/projects_winter_2021/reports/70747149.pdf
https://medium.com/analytics-vidhya/creating-mobilenetsv2-with-tensorflow-from-scratch-c85eb8605342
https://medium.com/analytics-vidhya/creating-mobilenetsv2-with-tensorflow-from-scratch-c85eb8605342
https://ag7982.medium.com/neural-architecture-search-nas-49d378fa04fe

International Journal for Computers and Information, IJCI, Vol. 10 - 3, Oct. 2023 (Special Issue(

Proceedings of 2nd International Conference on Computers and Information, ICCI 2023 174

Appendix A

Fruits-262 dataset was divided into training data and

validation data.

• Training data are used to fit parameters (weights,

biases, etc.) into the model. Models learn from examples

by adjusting their weights and biases in order to

minimize the loss function. The model's primary source

of data is its training data, which allow it to identify

patterns, relationships and generalizations, all of which

can be used to predict data that has not yet been seen.

• Validation data are separate examples that are not used

during the training process. These data are used to assess

the performance of the model during training and to

check for overfitting. Overfitting occurs when the model

becomes overly sensitive to noise and random

fluctuations within the training data. This may lead to a

poor generalization of the data. If necessary,

hyperparameters can be adjusted to prevent overfitting.

