
E. Mohamed. Safwat

57

AN EFFICIENT TECHNIQUE FOR SQL INJECTION DETECTION AND

PREVENTION

Esraa Mohamed Safwat

Computer science

Department

 Faculty of computer and

information

Menoufyia University

Esraa_safwat87@yahoo.com

Hany Mahgoub
Computer science

Department

Faculty of computer and

information

Menoufyia University

H_mghguob@yahoo.com

ASHRAF EL-SISI,
Computer science

Department

Faculty of computer and

information

Menoufyia University

ashrafelsisim@yahoo.com

Arabi Keshk
Computer science

Department

Faculty of computer and

information

Menoufyia University

arabikeshk@yahoo.com

 Abstract: With the recent rapid increase of interactive web applications that employ back-end database

services, a SQL injection attack has become one of the most serious security threats. This type of attack can

compromise confidentiality and integrity of information and database. Actually, an attacker intrudes to the web

application database and consequently, access to data. For preventing this type of attack different techniques

have been proposed by researchers but they are not enough because most of implemented techniques cannot stop

all type of attacks. In this paper our proposed technique are detection of SQL injection and prevention based on

first order, second order and blind SQL injection attacks online. The proposed technique implemented in JAVA

and evaluated for seven types of SQL injection attacks. Experimental results have shown that the proposed

technique is efficient related to execution time overhead. Our technique need to be one second overhead to

execution time. Moreover, we have compared the proposed technique with the popular web application

vulnerabilities scanner techniques. The most advantages of proposed technique Its easiness to adopt by software

developer, having the same syntactic structure as current popular record set retrieval methods.

Keywords: - Web application, Database SQL Injection Attack, detection, prevention

1. Introduction

Web sites are dynamic, static, and most of the time a combination of both. Web sites need

protection in their database to assure security. An SQL injection attacks interactive web

applications that provide database services. These applications take user inputs and use them to

create a SQL query at run time. In an SQL injection attack, an attacker might insert a malicious

SQL query as input to perform an unauthorized database operation. Using SQL injection

attacks, an attacker can retrieve or modify confidential and sensitive information from the

database.

The popular solutions for the prevention of SQL injection attacks include coding best

practices, input filtering, escaping user input, usage of parameterized queries, implementation

of least privilege, white list input validation [2,3,4], These solutions should be employed

usually during the development of an application. This is the major limitation of such solutions

as they do not cover the millions of Web applications already deployed with this vulnerability.

Detection of SQL injection and prevention technique is proposed based first order, second

order and blind SQL injection attacks online. SQL injection detection and prevention (SQLI-

mailto:Esraa_safwat87@yahoo.com
mailto:H_mghguob@yahoo.com
mailto:ashrafelsisim@yahoo.com
mailto:arabikeshk@yahoo.com

IJCI. Vol. 3 – No. 1, March 2014

58

DP) technique is implemented in JAVA and evaluated for five types of SQL injection attacks.

Experimental results have that proposed technique is efficient related to execution time

overhead, it's need to be approximately 1second overhead to execution time. In addition, it is

easily adopted by software developer, having the same syntactic structure as current popular

record set retrieval methods.

The rest of this paper is organized as follows; section 2 present the problem formulation

.section 3 presents the background about SQL injection attacks and the concept of parse tree

and presents related work. Proposed SQLI-DP technique and experimental results is presented

in section 4. Section 5 conclusion and future work is presented. Section 6 provides the

References.

2. Problem Formulation
SQL injection is a technique maliciously used to obtain unrestricted access to databases

by inserting maliciously crafted strings to SQL queries via a web application. It allows an

attacker to spoof his identity, expose and tamper with existing data in databases, and control

databases server with the privileges of its administrator. There is a variable SQL injection

scanner but it prolongs the connection time if it wants detect or prevent or both. The popular

solutions for the prevention of SQL injection attacks can't solve the problem of legacy

system and the software developer not easy to adapt. In this paper we try to improve the

execution time and try to found way to improve the legacy system to able to prevent

injection attacks. Try to make our technique easy to adapt by software developer and make

it more efficient in the future.

3. Background of SQL injection attack and parse tree concept

3.1 classifications of SQL injection attacks (SQLIA):

There are different methods of attacks which depend on the goal of attacker are performed

together or sequentially [5, 6, 7]. For a successful SQLIA the attacker should append a

syntactically correct command to the original SQL query. Show the types of SQLIAs attacks

with examples as the following.

E. Mohamed. Safwat

59

Table 1. Types of SQL injection attacks

3.2 Parse tree concept

 Parse tree is a data structure for the parsed representation of a statement. Parsing a

statement requires the grammar of the statement's language. By parsing two statements and

comparing their parse trees, we can determine if the two queries are equal. When a malicious

user successfully injects SQL into a database query, the parse tree of the intended SQL query

and the resulting SQL query do not match. By intended SQL query, we mean that when a

Types of Attack Description

Tautologies SQL injection codes are injected into one or more conditional statements so

that they are always evaluated to be true.

Exp: Generated SQL Query: SELECT username,

password FROM clients WHERE username =

„user1 OR „1‟ =‟1 —„ AND password = „whatever‟.

Logically Incorrect

Queries

Using error messages rejected by the database to find useful data facilitating

injection of the backend database.

Exp: “Microsoft OLEDB provider for SQL Server (0×80040E07)Error

converting nvarchar value „CreditCards‟ to a column of data type int”

Union Query Injected query is joined with a safe query using the keyword UNION in order

to get information related to other tables from the application.

Exp: SELECT * FROM Table1 WHERE id = -1 UNION ALL SELECT

null, null, NULL, NULL, convert(image,1), null, null,NULL, NULL, NULL,

NULL, NULL, NULL, NULL, NULL, NULl, NULL--

Stored Procedure Many databases have built-in stored procedures. The attacker executes these

built in functions using malicious SQL Injection codes.

Exp: SELECT accounts FROM users WHERE login= 'doe' AND pass=' ';

SHUTDOWN; -- AND pin =

Piggy-Backed

Queries

Additional malicious queries are inserted into an original injected query.

Exp: SELECT * FROM products WHERE id = 10; DROP TABLE

members;--

Alternate Encoding the injected text is changed in order to evade detection by defensive coding

practices and most of the automatic prevention techniques. Encodings such as

hexadecimal, ASCII and Unicode character encoding can be used for attack

strings.

Exp: SELECT * FROM Accounts WHERE user='user1';

exec(char(0x73687574646f776e)) -- ' AND pass=' ' AND eid=

 Blind Injection

An attacker derives logical conclusions from the answer to a true/false

question concerning the database.

- Information is collected by inferring from the replies of the page after

questioning the server true/false questions.

Exp: index.php?id=1 and 1=(SELECT 1 FROM

information_schema.tables WHERE TABLE_SCHEMA="blind_sqli" AND

table_name REGEXP '^[a-n]' LIMIT 0,1)

IJCI. Vol. 3 – No. 1, March 2014

60

programmer writes code to query the database, she has a formulation of the structure of the

query. The programmer-supplied portion is the hard-coded portion of the parse tree, and the

user-supplied portion is represented as empty leaf nodes in the parse tree. These nodes

represent empty literals. What she intends is for the user to assign values to these leaf nodes. A

leaf node can only represent one node in the resulting query, it must be the value of a literal,

and it must be in the position where the holder was located. By restricting our validation to

user-supplied portions of the parse tree, we do not hinder the programmer from expressing her

intended query. An example of her intended query is given in Figure 1. This parse tree

corresponds to the example we presented in Section 1, SELECT * FROM users WHERE

username=? AND password=?. The question marks are place holders for the leaf nodes she

requires the user to provide.3 While many programs tend to be several hundred or thousand

lines of code, SQL statements are often quite small. This affords the opportunity to parse a

query without adding significant overhead.

 Suppose that [8] a database contains name and password fields in the users table, and a web

application contains the following code to authenticate a user‟s log in.

sql = “SELECT * FROM users WHERE name = ‟” + request.getParameter(name) + “‟ AND

password = ‟” + request.getParameter(password) + “‟”;

This code generates a query to obtain the authentication data from database. If an attacker

inputs “‟ or 1=1 -- 1” into the name field, the query becomes:

SELECT * FROM users WHERE name = ‟‟ or 1=1 -- 1 AND password = „xxx‟;

The WHERE clause of this query is always evaluated to be true, and thus an attacker can

bypass the authentication, regardless of the data inputted in the password field.Web

applications commonly use SQL queries with client-supplied input in the WHERE clause to

retrieve data from a database. By adding additional conditions to the SQL statement and

evaluating the web application‟s output, you can determine whether or not the application is

vulnerable to SQL injection. For instance, many companies allow Internet access to archives of

their press releases. A URL for accessing the company‟s fifth press release might look like this:

http://www.thecompany.com/pressRelease.jsp?pressReleaseID=5

The SQL statement the web application would use to retrieve the press release might look like

this (client-supplied input is underlined):

SELECT title, description, releaseDate, body FROM pressReleases WHERE

pressReleaseID = 5

E. Mohamed. Safwat

61

The database server responds by returning the data for the fifth press release. The web

application will then format the press release data into an HTML page and send the response to

the client. To determine if the application is vulnerable to SQL injection, try injecting an extra

true condition into the WHERE clause. For example, if you request this URL . . .

http://www.thecompany.com/pressRelease.jsp?pressReleaseID=5 AND 1=1

. . . and if the database server executes the following query . . .

SELECT title, description, releaseDate, body FROM pressReleases WHERE pressReleaseID =

5 AND 1=1

. . . and if this query also returns the same press release, then the application is susceptible to

SQL injection. Part of the user‟s input is interpreted as SQL code.

A secure application would reject this request because it would treat the user‟s input as a value,

and the value “5 AND 1=1” would cause a type mismatch error. The server would not display a

press release.

The process of generation of queries in a dynamic web application can be represented as a

function of user‟s inputs. In this context, SQL injection is any situation in which the user‟s

input is inducing an unexpected change in the output generated by the function. We define two

parameters

 SQL Statement = SQL(Argi) (i=1 to n)

 Argi ← Input from user

 SQL() ← function represented by web application

 SQL Statement Safe = SQL(Arg Safe i) (i=1 to n)

 Arg Safe i ← “qqq” or any single token

We require that the application will not allow the user to enter any part of SQL query

directly. We define that two statements are semantically equivalent, if they perform similar

activities, once they are executed on the database server. So, if we determine that both SQL

Statement and SQL Statement Safe are semantically equivalent, then by definition the SQL

Statement is bound to have an expected behaviour and there is no possibility for a SQL

Injection. Here semantic action implies a particular activity like comparison, retrieval etc., and

not the lexical equality. We use this semantic comparison to detect SQL Injection. The

semantic comparison is done by parsing each of the statements and comparing the syntax tree

structure. If the syntax trees of both the queries are equivalent, then the queries are inducing

equivalent semantic actions on the database server, since the semantic actions are determined

by the structure of the SQL statement. For example,
Let,

Arg = {α, β} Arg Safe = {“qqq”, “qqq”}

Now,

 SQL Statement = SQL(Arg)

 = SELECT ∗ FROM „User _Table‟

 WHERE user_ name = „α‟ AND password = „β‟

IJCI. Vol. 3 – No. 1, March 2014

62

SQL Statement Safe = SQL(Arg Safe)

 = SELECT ∗ FROM User_ Table

 WHERE user_ name = „ qqq‟ AND password = „qqq „

The SQL Statement Safe is parsed to produce a syntax tree as shown in figure 1. We can consider two cases of

user inputs, first case without any injection and second with injection.

Figure.1. SQL_Statement_Safe

Case 1: Let,

Arg Normal = {α, β} = {admin, admin pwd}

Now,

 SQL Statement Normal = SQL (Arg Normal)

 = SELECT ∗ FROM User_ Table WHERE

 user name = „ admin‟ AND

 password = „admin_ pwd‟

The SQL Statement Normal can be parsed as shown in figure 2. On comparing the semantic

structure of SQL statement safe and SQL statement normal, we can see that both of them have

similar semantics. Both statements are extracting all values from a table after checking for two

logic equalities combined with an AND operator. This implies that there is no possible SQL

injection and hence we can safely execute the query.

Figure.2. SQL_Statement_Normal

 Case 2: Let,

 Arg Injection = {α, β} = {admin_ OR _1_ =_ 1, hacker pwd}.

Now,

E. Mohamed. Safwat

63

 SQL Statement Injection = SQL(Arg Injection)

 = SELECT ∗ FROM Use_ Table WHERE user_ name = admin OR „1‟ =‟1‟

 AND password = „hacker_ pwd‟

In this case, on comparison of SQL Statement Injection which is represented in figure 3 with

SQL Statement Safe, we can see that the semantic structures of The two statements are not

similar. This is because SQL Statement Injection is doing the additional action of ”OR ‟1‟ = ‟1‟

”. This implies that on application of the input, the semantics of the output has been modified.

This detects a possible SQL injection and the execution of the query should be stopped [10]. So

to prevent and detect the SQL injection we use parse tree.

Figure.3. SQL_Statement_Injection

3.3 Related Work

The techniques related to SQL injection are classified and evaluated by [9]. In this section,

we list the work related to ours and discuss their pros and cons. We can classify the related

work to two main parts:

3.3.1 Detections SQL injection techniques

Vulnerability detection is an approach for detecting vulnerabilities in web applications,

especially in the development and debugging phases. This approach is conducted either

manually by developers or automatically with the use of vulnerability scanners. In the manual

approach, an auditor manually reviews source code and/or attempts to execute real attacks to

the web application. For discovering vulnerabilities, the auditor is required to be familiar with

the software architecture and source code, and/or to be a computer security expert to attempt

effective attacks tailored to his or her web application. A comprehensive audit requires a lot of

time and its success depends entirely on the skill of the auditor. In addition, manual check is

prone to mistakes and oversights. On the other hand, the vulnerability scanners automate the

process of vulnerability detection without requiring the auditor to have detailed knowledge of

the web applications including security details. The automated vulnerability scanners eliminate

mistakes and oversights that is typically prone to be made by manual vulnerability detection.

IJCI. Vol. 3 – No. 1, March 2014

64

From this reason, vulnerability scanners are widely used for detecting vulnerabilities in web

applications.

The dynamic analysis scanners are based on penetration test, which evaluates the security of

web applications by simulating an attack from a malicious user. The attack is typically

generated by embedding an attack code into an innocent HTTP request. After sending the

attack to the target web application, the vulnerability scanner captures the web application

output to analyze the existence of vulnerabilities. Existing vulnerability scanners [10, 11, 12,

13, 14] employ dynamic analysis techniques for detecting vulnerabilities. AMNESIA combines

static analysis and runtime monitoring [15]. In static phase, it builds models of the different

types of queries which an application can legally generate at each point of access to the

database. Machine Learning Approach Valeur [16] proposed the use of an intrusion detection

system (IDS) based on a machine learning technique. IDS is trained using a set of typical

application queries, builds models of the typical queries, and then monitors the application at

runtime to identify the queries that do not match the model. The overall IDS quality depends on

the quality of the training set; a poor training set would result in a large number of false

positives and negatives. WAVES [17] is also based on a machine learning technique. WAVES

is a web crawler that identifies vulnerable spots, and then builds attacks that target those spots

based on a list of patterns and attack techniques. WAVES monitors the response from the

application and uses a machine learning technique to improve the attack methodology.

WAVES is better than traditional penetration testing, because it improves the attack

methodology, but it cannot thoroughly check all the vulnerable spots like the traditional

penetration testing. Instruction-Set Randomization SQLrand [18] provides a framework that

allows developers to create SQL queries using randomized keywords instead of the normal

SQL keywords. A proxy between the web application and the database intercepts SQL queries

and de-randomizes the keywords. The SQL keywords injected by an attacker would not have

been constructed by the randomized keywords, and thus the injected commands would result in

a syntactically incorrect query. Since SQLrand uses a secret key to modify keywords, its

security relies on attackers not being able to discover this key. SQLrand requires the

application developer to rewrite code. SANIA [19] for detecting SQL injection vulnerabilities

in web applications during the development and debugging phases. Sania intercepts the SQL

queries between a web application and a database, and automatically generates elaborate

attacks according to the syntax and semantics of the potentially vulnerable spots in the SQL

queries. In addition, Sania compares the parse trees of the intended SQL query and those

resulting after an attack to assess the safety of these spots. Paros is used for web application

security assessment. Paros is written in Java, and people generally used this tool to

evaluate the security of their web sites and the applications that they provide on web site.

It is free of charge, and using Paros‟s you can exploit and modified all HTTP and HTTPS data

among client and server along with form fields and cookies. In brief the functionality of

scanner is as below. According to web site hierarchy server get scan, it checks for server

miscount figuration. They add this feature because some URL paths can‟t be recognized

and found by the crawler.

E. Mohamed. Safwat

65

3.3.2 Preventing SQL injection techniques

Framework Support Recent frameworks for web applications provide a functionality that can

be used to prevent SQL injections. For example, Struts[20] supports a validator. A validator

verifies an input from the user conforms to the pre-defined format of each parameter. If a

validator prohibits an input from including meta-characters, we can avoid SQL injections.

Since a validator does not transform the dangerous characters to safe ones, we cannot prevent

SQL injections if we want to include meta-characters in the input. Prepare Statement SQL

provides the prepare statement, which separates the values in a query from the structure of

SQL. The programmer defines a skeleton of an SQL query and then fills in the holes of the

skeleton at runtime. The prepare statement makes it harder to inject SQL queries because the

SQL structure cannot be changed. Hibernate [21] enforces us to use the prepare statement. To

use the prepare statement, we must modify the web application entirely; all the legacy web

applications must be re-written to reduce the possibility of SQL injections. Queries are

intercepted before they are sent to the database and are checked against the statically built

models, in dynamic phase. Queries that violate the model are prevented from accessing to the

database. The primary limitation of this tool is that its success is dependent on the accuracy of

its static analysis for building query models. In SQL Check [22] and SQL Guard [23] queries

are checked at runtime based on a model which is expressed as a grammar that only accepts

legal queries. SQL Guard examines the structure of the query before and after the addition of

user-input based on the model. In SQL Check, the model is specified independently by the

developer. Both approaches use a secret key to delimit user input during parsing by the runtime

checker, so security of the approach is dependent on attackers not being able to discover the

key. In two approaches developer should to modify code to use a special intermediate library or

manually insert special markers into the code where user input is added to a dynamically

generated query. CANDID [24] modifies web applications written in Java through a program

transformation. This tool dynamically mines the programmer-intended query structure on any

input and detects attacks by comparing it against the structure of the actual query issued.

CANDID's natural and simple approach turns out to be very powerful for detection of SQL

injection attacks.

We believe high precision can be achieved by discovering more vulnerabilities and by

avoiding the issue of potentially useless attacks that can never be successful, with conducting

fewer attacks. To achieve this, we focus on the technique of generating attacks that precisely

exploit vulnerabilities. As a result, our approach generates attacks only necessary for

identifying vulnerabilities. We propose SQLI-DP technique for detecting SQL injection

vulnerabilities. In the output of the web application, which results in making fewer attacks,

detecting more vulnerabilities, and making fewer false positives/negatives.

IJCI. Vol. 3 – No. 1, March 2014

66

4. Problem Solution

4.1 Proposed technique for SQL Injection Detection and Prevention (SQLI-DP)

In this section, we present SQLI-DP technique, which tests for SQL injection vulnerabilities

and prevent SQL injection by the parse of the queries. The general view of SQLI-DP is shown

in figure 4 the discrete line if the software developer doesn't active SQLI-DP technique.

 Web application SQL Query

 Http request
 SQL Query
 & Http request Safety Request

Figure4. General view of SQLI-DP technique

4.1.1 The main contribution of SQLI-DP technique:

1. Detect blind SQL injection using new function.

2. Using parse tree to detect SQL injection using Zql [25] with open source technique.

3. Detect and prevent the SQL injection using this leads to decrease execution time.

Our technique has two options (continue with safety, unsafe option) if we select the safety

option activate SQLI-DP. If no (unsafe option) send request immediately to database and

execute query. Illustrates the core work of SQLI-DP technique where the three points.

4.1.2 SQLI-DP Technique pseudo code

SQLI-DP technique (SQLIA DETETION & PREVENTION)

1. INPUT: SQL, Http request
2. OUTPUT: prevent attack & Final Report.

3. T Http request.
4. Q sql statement query.

5. BEGIN

6. IF (DETECTION BLIND SQLIA FOREACH T) THEN
7. {

8. PREVENT T

9. CREAT FINAL REPORT
10. QUIT : SQLI-DP TECHNIQUE

11. }

12. ELSE IF (DETECTION SQLIA FOREACH Q)
13. {

14. PREVENT T

15. CREAT FINAL REPORT
16. QUIT : SQLI-DP TECHNIQUE

17.

18. }

Clien

t

Server

SQLI-

DP

Data

base

E. Mohamed. Safwat

67

19. ELSE

20. {
21. SEND Q TO DATABASE

22. }

4.1.3 The explanation steps of SQLI-DP technique is presents in details as follows

 STEP 1:

 Read the HTTP request from server and check if there is blind SQL injection or not as

illustrated in [26] some example about blind SQL injection attack we us to find this method to

detect blind SQLIA. There are several uses for the Blind SQL Injection:

• Testing the vulnerability.

• Finding the table name.

• Exporting a value.

There are more examples to traditional blind SQL injection and advanced blind SQL

injection [26]. We noticed that from last example there are traditional kind of blind SQL

injection and advanced kind with regular expression .To testing blind sql injection we scan the

http request after capture if it contain the key words [select, top, virsion,user, order, substring ,

ascii, from ,limit, having and etc.] or regular expression like [*,>,<,$,%,-- ,‟,[a-z],[A-z],”and

etc] . The normal http request not contain like this. Then classify the http request to normal or

abnormal request. If the system found Blind sql injection reject input go to step 3, if no

continue to step 2.

STEP 2:

Perform SQL validation using validation parse tree. Compare the parse tree generated from an

attack request with that generated from an innocent message to verify whether an attack was

successful or not. If the parse generated from an innocent request, SQLI-DP determines the

attack was successful. Suppose that a web application issues the SQL query “SELECT *

FROM users WHERE name=""(vulnerable spot), or ‟1‟=‟1”.we use the technique idea that

used in [27] when using a fresh key to user input. If the web application sanitizes the input

properly, the parse tree will look like the one shown in figure 1. If not properly sanitized, the

parse tree will look like the one shown in figure 3, where the structure of the parse tree is

different from figure 1, if the two tree are different detect there is injection. Then classify the

query as normal or abnormal and account the False positive (A false positive occurs when the

test returns a positive result, but there is actually no fault). Then Prevent abnormal user queries

and send normal user queries immediately to database and execute query and send the data to

server.

IJCI. Vol. 3 – No. 1, March 2014

68

STEP 3:

SQLI-DP generates the report that contains the SQL query with the user input data, if it found

blind sql injection and execution time by millisecond. The SQL query benefit in detection to

know the kind of SQL injection attack.

The advantages of SQLI-DP are illustrated as follows:

1- It is efficient, because it only adds about 1second overhead to database query costs.

2- In addition, it is easily adopted by software developer.

3- It is suitable for legacy system because it is a technique implemented on server side. It

doesn‟t need to rewrite old web application because protection from Injection is on

server side where database resides.

4.2 Experimental Result

The experiments methodology is done by designing MSQL database and a patche server web

application in our platform. The SQLI-DP technique is implemented by Java language. We

used Zql to implement an SQL parser. The SQLI-DP technique consists of an SQL proxy, and

a core component of our technique. The SQL proxy captures the SQL queries. The core

component of SQLI-DP performs the tasks described in the previous section. We apply SQLI-

DPs in windows7, 32-bit operating system and core (TM) i5 CPU. Some snapshoot screens

from SQLI-DP work are shown when using different options of unsafe and safe. If we using

unsafe system with SqlIA we noticed that the attack success and the server return all data

records in database table as shown in figure 5. SQLI-DP (unsafe option) response all recodes

because there are (Tautology injection found). If we using Safety system option SQLI-DP

prevents SQLIA in first test if it found blind injection attack it generates report as shown in

figure 6. If blind injection attack not found the SQLI-DP tests other types of sql injection

attacks. Figures 7 and 8 are show the reports generated after hacking in different types of

attack.

This report is benefit in:

1- To know the type of SQL injection attack.

2- Sure that the system prevents this attack to accessed database.

3- To estimate the execution time of detection and prevention.

As shown in figure 7 this report appears when the SQLI-DP found Piggy-Backed Queries

SQLIAs when try to access the web application database.

E. Mohamed. Safwat

69

Figure 5. Using unsafe option

Figure 6. SQLI-DP safety option with Blind sql injection

Figure 7. SQLI-DP with safety option with Piggy-Backed Queries SqlIAs

As shown in figure 8 this report appears when the SQLI-DP find Tautology SqlIAs

when try to access the web application database.

IJCI. Vol. 3 – No. 1, March 2014

70

Figure8. SQLI-DP with safety option with Tautology SqlIAs.

 Table1 shows the SQLI-DP techniques with respect to the number of attacks trails we using

manual hacking on the database and the execution time in millisecond.

Table 2. SQLI-DP trails and execution time

Types of SQLIA Num.of

Trials of

attacks

Detection &

prevention

Execution

time(ms)

Tautology 50 (50) 100% 1775

Logically Incorrect

 Queries

50 (50) 100% 1670

Union Query 50 (50) 100% 1819

Piggy-Backed Queries 50 (50) 100% 1670

Blind injection 40 (40) 100% 102

Alternate Encoding 10 (10) 100% 1560

Stored Procedure 10 (10) 100% 1800

We compare our SQLI-DP technique with Paros (detection technique).

 During our work we observed The SQLI-DP technique detect and prevent the Blind

SQLIA as the first check.

 The SQLI-DP technique give the user request query but the Paros technique no.

 The SQLI-DP technique add about 1s addition to the system but Paros technique add 5

second.

 The SQLI-DP technique is Server Side protection technique but Paros technique host

side protection.

 As shown in figure 9 the execution time to detect attack in SQLI-DP technique less than

Paros technique.

E. Mohamed. Safwat

71

Figure9. Execution time of SQLI-DP and Paros techniques

Through the study of previous observations and discuss the reasons, we find that SQLI-DP by

several features not found in other techniques. First, SQLI-DP detects and prevents using less

time than Paros for the following reasons:

1- SQLI-DP is server side technique work as a proxy between the server and database but

Paros work in host side is a proxy between client and server so SQLI-DP decreases the

communication time.

2- SQLI-DP detects and prevents the blind SQL injection attacks but Paros technique

detect only.

3- From the observation the SQLI-DP technique add only one second addition to the

system but Paros technique add approximately 4 second to the system.

4- The SQLI-DP technique gives the SQL query statement in the final report it's very

important to the developer:

 - To know kind of attack.

 - To detect the kind of attacks and use for protect this type of sits from this kind of

attacks.

 - To know the advanced schema of SQL injection attacks.

5- SQLI-DP give the final report after prevent the attacks to sure the attacks are prevented.

6- In addition, the SQLI-DP it is easily adopted by software developer because it written by

Java language that suitable for any platform .

7- It is suitable for legacy system because it is a technique that implemented on server side.

It doesn‟t need to rewrite old web application because protection from Injection is on

server side where database resides.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Paros

SQL IDP

IJCI. Vol. 3 – No. 1, March 2014

72

5. Conclusion and Future Work

We presented our new server side protection technique against SQL Injection, which is

designed to check for SQL injection vulnerabilities in the server side. SQLI-DP intercepts SQL

queries and analyize it based on the syntax of the SQL queries using parse tree. It rejects

injectable queries from beginning and executes other queries to detect SQL injection. It is

suitable for legacy system because it is a technique that is implemented on server side. It

doesn‟t need to rewrite old web application because protection from injection is on server side

where database resides. SQLI-DP has two advantages comparing with other scanner. It's

efficient, adding about 1second overhead to database query costs. In addition, it is easily

adopted by software developer, having the same syntactic structure as current popular record

set retrieval method and we detect and prevent blind SQL injection.

In future work, we intend to evaluate SQLI-DPs using different web based applications with

real public domain to achieve great accuracy in SQL injection detection and prevention.

6. References

[1] OWASP (2012, September 6). Testing for SQL Injection[Online]. Available:

http://www.owasp.org/index.php/Testing for SQL Injection.

[2] Nithya. A Survey on SQL Injection attacks, their Detection and Prevention Techniques.
International Journal Of Engineering And Computer Science Volume 2 Issue 4

April,2013 Page No.886-905.

[3] Sayyed Mohammad. Study of SQL Injection Attacks and Countermeasures.

International Journal of Computer and Communication Engineering, Vol. 2, No. 5,

September 2013 Page No.539-514.

[4] Gopi Krishnan. Preventing Injection Attack by Whitelisting Inputs . Lecture Notes on

Information Theory Vol. 1, No. 3, September 2013 Page No.132-134.

[5] W. Halfond and A. Orso, "Combining Static Analysis and Runtime Monitoring to

Counter SQL- Injection Attacks," Proceeding of the Third International ICSE Workshop

on Dynamic Analysis (WODA 2005), 2005.

[6] Chunhui Song. Song, “SQL Injection Attacks and Countermeasures”, California State

University, Sacramento, (Spring 2010).

[7] Z. Lashkaripour .A Simple and Fast Technique for Detection and Prevention of SQL

Injection Attacks. International Journal of Security and Its Applications Vol.7, No.5

(2013), Page 53-66.

[8] K.R Venugopal, L.M Patnaik , Patnaik,"Detection and prevention of SQL injection

attacks", Computer Networks and Intelligent Computing. 5th International Conference

on Information Processing, ICIP 2011, Bangalore, India, August 5-7, 2011, pages 104-

107.

http://www.owasp.org/index.php/

E. Mohamed. Safwat

73

[9] Atefeh Tajpour, Maslin Masrom, Mohammad Zaman Heydari, Suhaimi

Ibrahim,”Evaluation of SQL Injection Detection and Prevention Techniques,” 2nd

International Conference on Computational Intelligence, Communication Systems and

Networks, Liverpool, United Kingdom pages 216-221.

[10] Jason Sabin &Dan Timpson (2006, August). Paros (version 3.2.13) [Online]. Available:

http://www.testingsecurity.com/paros_proxy.

[11] Acunetix. Acunetix Web Security Scanner. http://www.acunetix.com/.

[12] IBM. Rational AppScan. http://www.ibm.com/software/awdtools/appscan/.

[13] Yao-Wen Huang, Shih-Kun Huang, Tsung-Po Lin, and Chung-Hung Tsai. Web

Application Security Assessment by Fault Injection and Behavior Monitoring.In

Proceedings of the 12th International Conference on World Wide Web, May 2003,

pages148–159.

[14] Stefan Kals, Engin Kirda, Christopher Kruegel, and Nenad Jovanovic. SecuBat: A Web

Vulnerability Scanner. In Proceedings of the 15th International Conference on World

Wide Web, May 2006, pages. 247–256.

[15] W. Halfond and A. Orso. AMNESIA: Analysis and Monitoring for NEutralizing SQL-

Injection Attacks. In Proceedings of the 20th IEEE/ACM International Conference on

Automated Software Engineering (ASE), pages 174–183, 2005.

[16] F. Valeur, D. Mutz, and G. Vigna. A Learning-Based Approach to the Detection of SQL

Attacks. In Proceedings of the Conference on Detection of Intrusions and Malware and

Vulnerability Assessment (DIMVA), pages 123–140, 2005.

[17] Y. Huang, S. Huang, T. Lin, and C. Tsai. Web Application Security Assessment by

Fault Injection and Behavior Monitoring . In Proceedings of the 12th International

World Wide Web Conference (WWW03), pages 148–159, 2003.

[18] S. Boyd and A. Keromytis. SQLrand: Preventing SQL injection attacks. In Proceedings

of the Applied Cryptography and Network Security (ACNS), pages 292–304, 2004.

[19] Yuji Kosuga, Kenji Kono, Miyuki Hanaoka,(August 2011). Sania: Syntactic and

Semantic Analysis for Automated Testing against SQL Injection, Doctor of Philosophy.

Keio University.

[20] Struts. Apache Struts project. http://struts.apache.org/.

[21] Hibernate. hibernate.org. http://www.hibernate.org/.

[22] Z. Su and G. Wassermann. The Essence of Command Injection Attacks in Web

Applications. ACM SIGPLAN Notices. Volume: 41, pp: 372-382, 2006.

[23] Gregory T. Buehrer, Bruce W. Weide, and Paolo A. G. Sivilotti Using : Parse Tree

Validation to Prevent SQL Injection Attacks, Computer Science and Engineering The

Ohio State University, pages 4-5,2009.

[24] Sruthi Bandhakavi, Prithvi Bisht, P. Madhusudan, CANDID:Preventing SQL Injection

Attacks using Dynamic Candidate Evaluation. Proceedings of the 14th ACM conference

on Computer and communications security. ACM, Alexandria,Virginia, USA.page:12-

24.

[25] Gibello. Zql: A java sql parser, 2002. In http://www.experlog.com/gibello/zql/.

http://struts.apache.org/
http://www.hibernate.org/
http://www.experlog.com/gibello/zql/

IJCI. Vol. 3 – No. 1, March 2014

74

[26] Simone 'R00T_ATI' Quatrini Marco 'white_sheep' Rondini. Blind Sql Injection with

Regular Expressions Attack.

[27] Jagdish Halde. (2008),SQL Injection analysis, Detection and Prevention. Master's

Theses and Graduate ResearchSan Jose State University.

