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Abstract 

Artificial intelligence is increasingly being used in various fields, including the management of hazardous medical waste. 

Medical waste poses an economic burden and a risk to public health, and it should be disposed of with care, preferably in 

areas far from residential areas. Data was collected on waste generated by 15 government hospitals in Menoufia Governorate 

and a single disposal site in Kafr Dawood, along with a central collection point for waste transport vehicles. This study 

addresses the issue of limited-capacity vehicle routing, which is considered a complex problem (NP-hard). Specific vehicles 

are designated to collect waste from hospitals and transport it to the disposal center, with the goal of finding the shortest 

route while maximizing the vehicle’s capacity, which is limited to three tons. Reinforcement learning techniques were 

developed, treating the vehicle as an agent trained to choose the shortest, least costly route between hospitals. The SARSA 

algorithm was implemented and improved. Solutions include SARSA, Dijkstra, knapsack dynamic programming, and hybrid 

approaches that combine SARSA with Dijkstra and SARSA with knapsack dynamic programming. The result shows that 

the hybrid approach between SARSA and knapsack dynamic programming is the most effective, as it reduces the number 

of vehicles used for waste transport and maximizes the vehicle’s capacity, determining the shortest routes between all 

hospitals. Finally, transportation costs were calculated to complete the mathematical model for medical waste management. 

 
Keywords: Reinforcement learning, Closed Capacity Vehicle Routing Problem, Dijkstra, knapsack problem 

1. Introduction 
Medical waste is a crucial concern that must be taken into account as it can impact the spread of diseases 

among populations and holds economic significance in terms of its disposal [1]. These waste materials originate 

from hospitals, healthcare facilities, private clinics, outpatient centers, and more. Medical waste can be 

categorized into two types: hazardous and non-hazardous waste. It’s worth noting that non-hazardous medical 

waste can sometimes be recycled, while some can be incinerated within hospital incinerators if available [2]. 

Hospitals without incinerators for non-hazardous waste can seek assistance from other hospitals with 

incineration facilities. On the other hand, hazardous medical waste requires careful handling. It must be 

transported to distant incineration facilities located away from residential areas. Hospitals generating hazardous 

medical waste collect and package the waste in specialized medical waste bags. These waste materials are then 

transported in dedicated vehicles.  

The Ministry of Health specifies qualified vehicles for collecting hazardous medical waste to prevent 

pollution during transportation [3]. Additionally, trained and qualified drivers are assigned by the Ministry of 

Health to handle the transportation of the waste materials, ensuring safety protocols are followed in case of 

injuries or accidents [4]. Each of the vehicles follows a specific route to achieve the shortest path for waste 

collection and maximize the vehicle's load capacity, preventing vehicles from traveling empty. Indeed, this 

problem can be classified as a Vehicle Routing Problem (VRP) with the added challenge of capacity constraints 

[5], given that the vehicles transporting waste between hospitals have limited capacities. Consequently, it falls 

within the category of a Capacity Vehicle Routing Problem (CVRP). There are two main types of Capacity 

Vehicle Routing Problems: closed and open. Closed CVRP: In this type, each route must start and end at the 

same depot (collection center). It means that the vehicles return to the depot after serving all the hospitals. In an 
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open CVRP, the routes do not necessarily have to start and end at the same depot. Vehicles can finish their 

routes at any hospital location. This type is more flexible and is suitable when vehicles do not need to return to 

a central depot after completing their routes [6]. The CVRP was classified as closed-CVRP. The problem of 

Capacity Vehicle Routing, especially when considering factors like optimizing routes, minimizing costs, and 

adhering to capacity constraints, can be effectively modeled and solved using various machine learning 

algorithms and techniques. Machine Learning: It is a branch of Artificial Intelligence that focuses on developing 

techniques and models that allow systems and software to learn from data and improve their performance over 

time. Machine Learning uses algorithms and mathematical models to discover patterns and guide towards a 

better outcome based on data. Machine learning can be categorized into several types based on the learning style 

and the nature of the learning process [7].  

The main types of machine learning are: Supervised Learning, unsupervised Learning, Semi-supervised learning 

and Reinforcement Learning. Reinforcement learning (RL) differs from other types of machine learning in its 

primary goal, type of data, and methodology. The main objective of reinforcement learning is to help an agent 

make optimal decisions in a specific environment through trial and error, aiming to maximize long-term reward 

or benefit. This learning paradigm relies on state and reward feedback, where the agent learns from its 

experiences and adjusts its strategy based on past interactions. In contrast, supervised learning aims to predict 

output based on given input data, utilizing predefined input-output pairs, and the model learns by comparing its 

predictions with the actual outcomes. Unsupervised learning, on the other hand, seeks to discover hidden 

patterns in data without direct input-output signals. It involves continuous interaction with the environment, 

where the agent takes actions, receives feedback, and adjusts its strategy accordingly. RL has several methods 

and algorithms designed for various applications and scenarios for example Model-Free RL and Model-Based 

RL [8]. Model-Free RL is an approach where an agent learns to make decisions without explicitly building a 

model of the environment. It learns through trial and error by interacting with the environment, collecting data, 

and updating its policy based on the observed rewards and state transitions. Model-Based RL is an approach 

where an agent builds an explicit model of the environment, including the transition dynamics, rewards, and 

uncertainties. It uses this model for simulation and planning to make decisions.  

Common RL algorithms include SARSA (State–action–reward–state–action), Q-Learning, Deep Q-Networks 

(DQN), and Policy Gradient methods [9]. For this problem, SARSA has been chosen, which is classified as a 

Model-Free RL algorithm. SARSA, an abbreviation for State-Action-Reward-State-Action, represents a 

reinforcement learning approach employed to train agents in making decisions within uncertain environments. 

In SARSA, the agent refines its policy by adapting to observed sequences of state-action-reward-state-action 

interactions. As an on-policy learning algorithm, SARSA continuously enhances its current policy, considering 

both immediate rewards and future states. This technique proves especially valuable in contexts where actions 

directly influence the agent's rewards and subsequent states. SARSA is widely used in applications like robotics, 

game playing, and autonomous systems where agents need to learn optimal decision-making policies through 

trial and error [10]. The SARSA algorithm is utilized to solve CVRP. To enhance the results, an integrated 

approach that combines SARSA with Dijkstra's algorithm and the Knapsack problem is used. Dijkstra’s 

algorithm is a widely used graph traversal and shortest path-finding algorithm. The primary objective of 

Dijkstra's algorithm is to find the shortest path between a specified source node and all other nodes in a weighted 

graph [11]. The algorithm operates on graphs where each edge has a non-negative weight or cost associated 

with it. Dijkstra's algorithm is a greedy approach that iteratively selects the node with the smallest tentative 

distance from the source and updates distances to its neighboring nodes. This algorithm has numerous 

applications in network routing, GPS (Global Positioning System) navigation, transportation planning, and 

various optimization problems [12]. Combining Dijkstra's greedy algorithm with SARSA can introduce various 

challenges. The algorithm often relies on specific assumptions about data representation and graph structure.  

The challenges associated with this integration extend beyond the algorithm's inherent greediness, 

encompassing additional complexities related to different data handling approaches. Another type of integration 

is introduced as the Knapsack solver. The Knapsack problem is a classic optimization problem in mathematics 

and computer science. The goal is to choose items to fit into a knapsack (or backpack) with limited capacity 

such that the total value of the selected items is maximized without exceeding the knapsack's weight limit [13]. 

The Knapsack problem has various variants, including the 0/1 Knapsack problem (where items can be either 

selected or not) and the Fractional Knapsack problem (where items can be partially selected). It has practical 

applications in resource allocation, financial portfolio optimization, and various decision-making scenarios 

where limited resources must be allocated optimally [14]. There are several approaches to solving the knapsack 

problem categorized into (Dynamic programming, greedy algorithms, Branch and Bound, Approximation 

Algorithms, Genetic Algorithms and Integer Linear Programming (ILP)) [15] [16]. The knapsack problem is 

solved using a dynamic programming approach. The challenge of this approach lies in its capacity to efficiently 

find an optimal solution by eliminating redundant computations [17]. Combining SARSA and a knapsack solver 
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is suitable for scenarios where the agent learns by interacting with an environment and receives feedback in the 

form of rewards. It is used for optimization problems where items have different values and weights, and the 

objective is to maximize the total value without surpassing a specified weight limit. Five distinct methods are 

employed to solve this model.  

In the next sections, other aspects of the research are explored, with Section 2 focusing on discussing related 

work. Section 3 discuss the definition of the problem and RL model for CVRP. Section 4 discuss the solution 

approach like as SARSA, Dijkstra, the integration between SARSA and Dijkstra, the knapsack problem and 

then the integration between SARSA and knapsack solver. Section 5 discuss the presentation and Analysis of 

the results. Section 6 discuss the comparative evaluation of the Five Distinct Algorithms. Section 7 summarize 

the Findings of this Study. 

2. Related work 

When previous studies are examined, it is seen that there are many studies on the subject of medical waste 

disposal. papers that provide comprehensive discussions on the vehicle routing problem were discussed first, 

then publications dedicated to the management of medical wastes. Lastly, the literature pertaining to 

reinforcement learning techniques were discussed. 

In the referenced study [18] it introduces a novel approach employing reinforcement learning techniques to 

discover optimal routes from a depot to a set of customers. This approach takes into consideration the capacity 

constraints of the vehicles, ultimately aiming to minimize the overall cost of transporting goods and services. 

To address the CVRP, different methodologies were used, such as the exact method of column generation, 

Google's Operations Research tool, and reinforcement learning. The ultimate objective is to attain optimality in 

solving large-scale vehicle routing problems. One of the disadvantages of this research is the computational 

complexity associated with certain algorithms utilized, notably column generation and RL. These algorithms, 

while powerful, can demand significant computational resources and expertise to be implemented effectively. 

This complexity may pose a challenge for organizations with limited computational resources or expertise. To 

enhance the practical relevance of the research and its applicability to real-world scenarios, future work should 

consider extending the model to include time window constraints, resulting in a more comprehensive CVR with 

time-windows (CVRPTW) solution.  

In the referenced study [19] it presents a solution to the problem of container scheduling in cloud platforms 

using a predictive reinforcement learning algorithm called A-SARSA. It discusses the challenges faced by 

traditional reinforcement learning methods in container scheduling, such as untimely scheduling, lack of 

decision-making accuracy, and poor adaptability to changing workloads. The A-SARSA algorithm addresses 

these issues by combining the ARIMA model and neural network model to ensure predictability, accuracy, and 

adaptability in scaling strategies. Through extensive experiments, A-SARSA has been shown to significantly 

reduce SLA violation rates while maintaining resource utilization levels. This approach used in this text includes 

untimely resource scheduling, inaccurate scaling decisions, and repeated resource scheduling in RL applied to 

container scheduling scenarios. To address these issues, one potential solution is to enhance the prediction 

accuracy of workload by incorporating more sophisticated forecasting models or techniques. Additionally, 

improving the efficiency of action selection and decision-making processes through the refinement of neural 

network models or the integration of more advanced algorithms could lead to a better outcome. Furthermore, 

optimizing the RL algorithm parameters or exploring alternative RL approaches tailored specifically for 

container scheduling tasks may also help mitigate these shortcomings.  

In the referenced study [20] it explores the advantages of autonomous vehicles in managing urban traffic, 

emphasizing the use of SARSA (λ)-based Adaptive Traffic Signal Controller (ATSC) systems. Recognizing 

shortcomings in traditional SARSA (λ) models, the study suggests enhancements like employing a Gaussian 

function for decay regulation and adopting MaxAbs scaled state values. Additionally, combining the A-star 

routing algorithm with the proposed model enhances performance. Evaluation in a SUMO-based simulation on 

a realistic 21-intersections network demonstrates notable reductions in vehicle wait times and stops, along with 

improved trip speeds with the A-star combined controller. One of the drawbacks of the traditional method was 

inefficient weight updating. One proposed solution is to use a Gaussian decaying approach for the eligibility 

trace vector, which improves weight updating efficiency.  

In the referenced study [21] it addresses this limitation by introducing a multi-path routing algorithm based on 

an enhanced breadth-first search. The proposed approach begins by employing the improved breadth-first search 

algorithm to gather front hop node information for the destination node, taking into account the inter-satellite 

network topology. Subsequently, all shortest paths are derived by backtracking through the front hop nodes. 

Through simulation experiments, the proposed algorithm demonstrates improvements in the throughput of the 

inter-satellite network, coupled with reduced time delay and packet loss rates. The limitations highlighted in 
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this paper include the constraint of a single shortest path in traditional routing algorithms. The adaptability to 

network dynamics is addressed by the improved inter-satellite multipath algorithm, combined with 

reinforcement learning, overcoming the shortcomings of traditional algorithms. This strategy proves effective 

in preventing data traffic congestion during inter-satellite network communication, leading to a lower latency, 

a reduced packet loss rates, and an improved overall network throughput performance.  

After a comprehensive review of collaborative research and identifying existing limitations, it was observed 

that there is a gap in addressing the issue of hospital waste transportation in the governorates of Egypt using 

either mathematical models or artificial intelligence methods. Some studies utilizing artificial intelligence 

techniques were found to use the algorithm without introducing any enhancements or integrating it with other 

artificial intelligence methods. The study approach involves applying the waste transportation problem in Egypt 

using a reinforcement learning method. Moreover, one of the reinforcement learning algorithms is improved 

and integrated with other algorithms, conducting a comparative analysis of the results. This research is 

distinctive because it avoids the shortcomings identified in several collaborative studies. 
 

3. Problem definition  

Health-care waste is classified as a subcategory of hazardous waste in many countries. The study aims to solve 

the problem of hazardous waste from Health-care centers and transfer it to the disposal site (destination site) 

and then return to collection Centers (depot site), but these Health-care centers are sited in different locations 

on the google map in the Menoufia governorate as shown in Table 1. 

Table 1. Length of latitude and  longitude for hospital nodes and its index 
Index Hospital Name 𝒙 𝒚 Demands Demands 

S Directorate of Health Affairs 30.55 31.13 0 0 

1 Quwisna General  30.55 31.13 0.904 0.957 

2 Qasr  30.57 31.01 1.472 1.503 

3 Zawiya Al Naoura Fever  30.54 30.86 0.325 0.427 

4 Mit Khalaf Fever  30.50 31.13 1.076 1.106 

5 El-Bajur General  30.43 31.02 0.604 0.711 

6 Sers El-Lyan  30.44 30.96 0.271 0.191 

7 Menouf Central  30.47 30.92 0.658 0.511 

8 Menouf Fever  30.47 30.92 0.761 0.779 

9 Berket El-Sabaa  30.63 31.09 0.334 0.346 

10 Shentena Al-Hagar Fever  30.64 31.05 0.236 0.314 

11 Tala Central  30.68 30.95 0.491 0.427 

12 Tala Fever  30.67 30.93 0.355 0.473 

13 Al-Shuhada Central  30.59 30.90 0.623 0.458 

14 Ashmoun General  30.29 30.98 0.582 0.657 

15 National Liver Institute 30.57 31.01 3 2.989 

D Kafr  Dawood Al-Sadat  30.46 30.82 0 0 

In Table 1, the first column represents the number of each hospital. The second column represents the names 

of the hospitals used in this paper. The third and fourth columns represent the latitudinal and longitudinal 

locations of the hospitals on Google Maps. For instance, Node 1, which corresponds to Quwisna General 

Hospital, is located at coordinates (30.55m, 31.13m) on the x and y axes, respectively. The fifth and sixth 

columns represent the amount of waste produced by each hospital twice a week, meaning the vehicles visit the 

hospitals twice a week. During these visits, the waste is collected and stored twice a week, awaiting the vehicles' 

visits to each hospital. Collected a statistical sample of data on hospital waste, along with the locations of each 

hospital and the disposal site from various sources, including the Directorate of Health Affairs in Menoufia, 

the Public Mobilization and Statistics (CAPMAS), the Ministry of Health, and Google Maps [22][23]. The 

method for collecting data on hospital waste involved approaching the Directorate of Health Affairs in 

Menoufia, which serves as the central hub for all information and statistics regarding all government hospitals 

in the province. They have detailed information on waste quantities, number of beds, number of deaths, number 

of births, and so on for each hospital. The data is collected and analyzed by certain personnel in the Directorate 

to ensure its accuracy. A sample of this data was taken to create a mathematical model to solve the vehicle 

capacity problem, and this sample was from the first week of January 2024. In Menoufia government and its 

suburbs, there are a total of 15 hospitals, one collection center (depot), and one disposal site in the City of Sadat. 

https://en.wikipedia.org/wiki/Length_of_a_degree_of_latitude
https://en.wikipedia.org/wiki/Length_of_a_degree_of_longitude
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The proposed mathematical model is a multi-hazardous waste, multi-period waste, and multi-vehicle model 

that includes waste production nodes (hospitals), potential one depot (Directorate of Health Affairs) and one 

disposal sites (Kafr Dawood Al-Sadat). The objective of this model is to simultaneously minimize the total 

cost, total time, total distance, and pollution risk, while maximizing the total capacity of the homogenous fleet 

vehicles. This problem falls under the category of closed capacity vehicle routing problem (CVRP), where 

vehicles depart from the collection centers, travel to visit hospital node until reach to the disposal sites, and 

then return to the collection centers. A CVRP application is defined as a set of nodes 𝑛 (hospitals) that index 

from 1 ⋯ 𝑛 with 𝑛 equal to 15 in this specific case. Each node is associated with specific demand 𝑑𝑖;The 

distance from hospital 𝑖 to hospital 𝑗 is defined by ∆𝑖𝑗 .That information can be extracted from Table 1. Node 

S mean depot and the disposal site has index with node D in Table 1. Each vehicle has fixed capacity 𝑄 as 

shown in the following formula that equal to 3 tons. By adopting a single route scenario, the model aims to 

streamline the waste management process and optimize the efficiency of vehicle utilization. It effectively 

minimizes unnecessary detours, reduces travel distances, and optimizes resource allocation. Furthermore, it 

ensures that waste collection and transportation operations originate from the collection center, establishing 

routes between hospitals to efficiently dispose of the collected waste at the disposal site according to vehicle 

capacity. This approach leads to significant cost savings, diminished pollution risks, and an overall 

enhancement of the waste management system's effectiveness as shown in the following mathematical model 

[24].  

 𝑁 𝑖𝑠 𝑠𝑒𝑡 𝑜𝑓 ℎ𝑜𝑠𝑝𝑖𝑡𝑎𝑙𝑠  with depot and disposal site node N = {S, 1,2,3, … ,15, D}. 

 𝐴 𝑖𝑠 𝑠𝑒𝑡 𝑜𝑓 𝑎𝑟𝑐𝑠, 𝑤𝑖𝑡ℎ 𝐴 = {(𝑖, 𝑗) ∈ 𝑁2: 𝑖 ≠ 𝑗} 

 𝑐𝑖𝑗 𝑖𝑠 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑡𝑟𝑎𝑣𝑒𝑙 𝑜𝑣𝑒𝑟 𝑎𝑟𝑐 (𝑖, 𝑗) ∈ 𝐴 

 𝑄 𝑖𝑠 𝑡ℎ𝑒 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 

 𝑑𝑖  𝑖𝑠 𝑡ℎ𝑒 𝑎𝑚𝑜𝑢𝑛𝑡 𝑡ℎ𝑎𝑡 ℎ𝑎𝑠 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑 𝑓𝑟𝑜𝑚 ℎ𝑜𝑠𝑝𝑖𝑡𝑎𝑙𝑠 𝑎𝑛𝑑 𝑑𝑒𝑙𝑖𝑣𝑒𝑟 𝑡𝑜 𝑑𝑖𝑠𝑝𝑜𝑠𝑎𝑙 𝑠𝑖𝑡𝑒 𝑖 ∈ 𝑁 

 𝑡𝑖𝑗 𝑖𝑠 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑡𝑟𝑎𝑣𝑒𝑙 𝑜𝑣𝑒𝑟 𝑎𝑟𝑐 (𝑖, 𝑗) ∈ 𝐴, 𝑇 𝑚𝑒𝑎𝑛 𝑠𝑢𝑚𝑚𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑡𝑖𝑚𝑒 (𝑡𝑖𝑗). 

 𝑑𝑖𝑠𝑖𝑗 𝑖𝑠 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑡𝑟𝑎𝑣𝑒𝑙 𝑜𝑣𝑒𝑟 𝑎𝑟𝑐 (𝑖, 𝑗) 𝐴 𝑑𝑖𝑠 𝑖𝑠 𝑎 𝑠𝑢𝑚𝑚𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑡𝑖𝑚𝑒 (𝑑𝑖𝑠𝑖𝑗) 

Then the formulation is the following: 
min    ∑ 𝑐𝑖𝑗 𝑋𝑖𝑗                                                                                                       𝑖,𝑗∈𝐴 (1) 

𝑠. 𝑡.        ∑ 𝑋𝑖𝑗 = 1                                                                                          𝑗∈𝑁,𝑗≠𝑖 (2) 

∑ 𝑋𝑖𝑗 = 1                                                                                          𝑖∈𝑁,𝑖≠𝑗 (3) 

∑ ∑ 𝑑𝑖  𝑥𝑖𝑗
𝑛  ≤ 𝑄            ∀𝑛 ∈ 𝑁𝑗∈𝑁{0},𝑖≠𝑗𝑖∈𝑁                                          (4) 

∑ ∑ 𝑡𝑖  𝑥𝑖𝑗
𝑛 = 𝑇               𝑡𝑖 ∈ 𝑇  𝑗∈𝑁{0},𝑖≠𝑗𝑖∈𝑁                                          (5) 

∑ ∑ 𝑑𝑖𝑠𝑖  𝑥𝑖𝑗
𝑛 = 𝐷𝑖𝑠       𝑑𝑖𝑠𝑖 ∈ 𝐷𝑖𝑠

𝑗∈𝑁{0},𝑖≠𝑗𝑖∈𝑁

                                       (6) 

To achieve this goal, CVPR was solved by SARSA algorithm. Then SARSA was integrated with two different 

techniques, as discussed in the next sections. 

4. Proposed approach 

Solutions to this problem are presented in this section using three artificial intelligence approaches. 

 

4.1 The Proposed Algorithm 

SARSA serves as a reinforcement learning algorithm designed for sequential decision-making in an 

environment. Functioning as a model-free and on-policy approach, it involves the agent learning a policy based 

on its current state, receiving rewards, and refining its understanding of the environment. In the SARSA process, 

the agent assesses its present state, chooses an action, observes the subsequent state, receives a reward, and 

adjusts its policy in response. SARSA is introduced from the perspective of our problem. A group of agents, 

denoted as 𝑉 =  {1,2, … , 𝑉} (referred to as vehicles), are tasked with collecting waste from hospitals, denoted 

as ℎ =  {1,2, … ,15}, and transporting it to a disposal node ℎ =  𝐷, then returning to the depot ℎ =  𝑆. This 

algorithm involves taking an action (𝐴) in the current state (𝑆), receiving a reward (𝑅), transitioning to the next 

state (𝑆1), and then taking action (𝐴1) in 𝑆1.The various elements of our model are further explained in depth in 

Figure 1 below. 
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Figure 1. SARSA model for CVRP 

In Figure 1, the SARSA framework adopted for the specific case study is illustrated. The model is designed to 

determine the most efficient route between hospitals, considering waste collection capacity. A 17x17 grid was 

established with distance values in each cell, initially set to zero in the Q-matrix. SARSA algorithm is utilized 

to iteratively refine these values through trial-and-error learning. The system updates values by evaluating 

differences between current and target values, calculated using the Bellman equation [25].  

𝑄(𝑠𝑡 , 𝑎𝑡) ← 𝑄(𝑠𝑡 , 𝑎𝑡) + 𝛼[𝑟𝑡+1 + 𝛾 𝑄(𝑠𝑡+1, 𝑎𝑡+1) − 𝑄(𝑠𝑡, 𝑎𝑡)]                                        (7) 

where 𝛼 ∈ (0,1) is the learning rate. 

The SARSA procedure begins with the initialization of 𝑄(𝑆, 𝐴) to arbitrary values. During this phase, the initial 

current state (𝑆) is established, and the initial action (𝐴) is chosen using an epsilon-greedy algorithm policy 

based on current Q-values. An epsilon-greedy policy strikes a balance between exploitation and exploration 

methods during the learning process, ensuring the selection of the action with the highest estimated reward. 

Exploitation entails leveraging existing, estimated values to maximize previously acquired rewards during the 

learning process. Exploration, on the other hand, entails seeking new insights into actions, which might lead to 

sub-optimal actions in the short term but could yield long-term benefits in identifying the optimal action and 

reward. Clarify the meaning of state, action, and reward in relation to our problem. 

4.1.1 States 

In the medical waste management algorithm, states were defined as 𝒮 = {𝑣 , ℎ, 𝑑 }: 

 𝑣  represent Agent (vehicles). 

 ℎ  represent hospitals node. 

 𝑑  represent disposal site where wastes generated from hospitals is incinerated. 

The vehicles' itinerary commences at the collection center under the administration of the Directorate of Health 

Affairs. From there, the shortest route between hospitals is determined to gather waste from each hospital and 

transport it to the disposal site for proper disposal as shown in figure 2. 

 
Figure 2. State Diagram inside matrix 

Figure 2 presents a sample episode where the agent moves from the current state to collect waste and then 

proceeds to the terminal state (defined in this matrix at the cell combining the first row and third column), 

representing the disposal site, to obtain the optimal reward, all while ensuring that the vehicle load does not 

exceed its maximum capacity. 
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4.1.2 Actions 

For each vehicle 𝑣 in the set 𝑥, the available actions include: 

 𝑥 =  {left, right up, down, pick − up, deliver}.  
The first four actions indicate the direction for the agent to move from the current state to the next state, while 

the remaining actions determine whether the agent picks up waste from a hospital or delivers waste to the 

disposal site when it reaches the next state. The agent attempts to learn the optimal action that leads to the 

maximum reward. It explores different actions through trial and error to determine the best action from the 

current state to transition to the next state. 

4.1.3 Reward 

The primary objective of any agent is to maximize the reward, which implies that the agent aims to reach a 

solution that is close to optimal. In the study, rewards are classified within a range from negative values to 100. 

The reward assigned to each action corresponds to how close the resulting state is to the disposal site. Although 

the goal is to achieve the shortest distance between hospitals, making the objective function a minimization 

function, the reward for teaching the agent is the highest possible reward, making it a max value. The distance 

between hospitals is included in a reward table representing the relationship between state and action. This table 

is represented in the form of an adjacent matrix, where the values represent the distances between hospitals, but 

inverted, so the value is 1/distance. In this setup, the highest reward is set to a random value of 100, and no 

distance exceeds 100 in the inverted form. Thus, a balance has been achieved between the minimum objective 

function and maximum reward. 

4.1.4 Time Complexity  

The time complexity for a single step in the SARSA approach (updating Q-values) is 𝑂(1).Thus, the overall 

time complexity for running SARSA for 𝑛 episodes is 𝑂(𝑛 ∗ 𝑡) where, 𝑛 as the number of episodes, 𝑡 as the 

average number of steps per episode. 

4.1.5 CSARSA (Capacity-SARSA) 

After implementing the SARSA algorithm in the problem, the output resembles individual shortest routes for 

each node. Each path starts from a specific node and follows the shortest route until reaching the disposal site. 

The required number of vehicles is then determined to service these distributed paths. The number of vehicles 

is calculated based on the number of hospitals and the distances between them, considering that each vehicle 

has a capacity of 3 tons. The result is a distribution of vehicles serving 15 hospitals according to the implemented 

CVRP using the SARSA algorithm (CSARSA). 

4.2 SARSA with Dijkstra (𝑺𝑨𝑫𝑱) 

Dijkstra's algorithm prioritizes the exploration of route with the shortest accumulated distance and cost. 

Dijkstra's algorithms estimate as the greedy process as shown in the following equations [26]. 

𝑙𝑜𝑎𝑑 ←  𝑑𝑖𝑠𝑡[𝑢] +  𝐺𝑟𝑎𝑝ℎ. 𝐸𝑑𝑔𝑒𝑠(𝑢, 𝑣)                                                               (8) 

𝒊𝒇 𝑙𝑜𝑎𝑑 <  𝑑𝑖𝑠𝑡[𝑣]                                                                                                      (9) 

𝑑𝑖𝑠𝑡[𝑣] ←  𝑙𝑜𝑎𝑑                                                                                                  (10) 

𝑝𝑟𝑒𝑣[𝑣]  ←  𝑢                                                                                        (11) 
𝒓𝒆𝒕𝒖𝒓𝒏 𝑑𝑖𝑠𝑡[ ], 𝑝𝑟𝑒𝑣[ ]                                                                               (12) 

Initially, Dijkstra's algorithm was implemented independently for our specific problem, CVRP, but the obtained 

results were not satisfactory. Dijkstra's algorithm, being a greedy algorithm, makes locally optimal choices at 

each step. Although effective in many scenarios for finding the shortest path, it does not ensure a globally 

optimal solution. Recognizing this limitation, the approach was enhanced by combining the strengths of SARSA 

with the local optimization of Dijkstra's algorithm. The hybrid approach of SARSA with Dijkstra's algorithm 

(SADJ) synergizes the advantages of both techniques. SARSA, rooted in reinforcement learning, enables the 

system to learn optimal actions through exploration and exploitation. Meanwhile, Dijkstra's algorithm, a classic 

graph-based method, focuses on finding the shortest path based on accumulated distances and cost. The 

performance of the SARSA algorithm aligns with that of the Dijkstra algorithm until the vehicle load reaches 

its maximum capacity. As the problem's load capacity increases, the SARSA algorithm starts exploring 

alternative paths to deviate from the shortest route and reduce costs. Combine Q-values and Dijkstra's distances 

to create hybrid values. This combination could involve adding Q-values to Dijkstra's distances or using a 

weighted sum. For each episode, use hybrid values to make decisions. Then Choose the action that maximizes 

the hybrid value for the current state. Continue SARSA and Dijkstra's algorithm iterations until they converge, 

or a stopping criterion is met.  After that, adjust learning parameters to balance exploration and exploitation in 

https://en.wikipedia.org/wiki/Greedy_algorithm
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SARSA. Then, evaluate the performance of the hybrid approach against other methods like combining SARSA 

with the knapsack problem. This approach harnesses the benefits of both algorithms, resulting in a combined 

complexity comparable to the individual complexities of each method, such as 𝑂(𝑣 𝑙𝑜𝑔 𝑣) + 𝑂(𝑛 ∗ 𝑡)) where 

𝑣 is the number of vertices (states). 

4.3 SARSA with knapsack problem(𝑺𝑨𝑲𝑷) 

 
The knapsack problem is a classic optimization problem in computer science and mathematics. Modeling our 

approach as a 0/1 knapsack problem using Dynamic Programming, where a binary choice is made for each 

hospital's waste - either selecting all waste (1) or excluding all waste from the hospital (0). In the 0/1 knapsack 

problem, you are given a set of items (hospitals location), each with a weight (maximum vehicle capacity) and 

a value (distance between hospitals). The goal is to select a subset of these items to maximize the total value, 

while keeping the total weight within a given capacity (knapsack's weight limit). Each item can either be 

included (0) or excluded (1), hence the name "0/1" knapsack problem. The challenge is to find the optimal 

combination of items that maximizes the value while respecting the weight constraint. Create a table (usually a 

2D array) with dimensions [𝑛 + 1][𝑊 + 1], where ′𝑛′ is the number of hospitals  and ′𝑊′ is the maximum 

weight capacity of the knapsack (vehicle capacity equal to 3 tons). Initialize all cells to 0. Create a list of ′𝑛′ 
items, each with a weight (𝑤[𝑖]) and a value mean distance between each hospital (𝑣[𝑖]). These items are the 

ones you want to choose from to maximize the total value within the weight constraint as shown in the following 

equation [27]. 
𝐝𝐩[𝐢][𝐣] =  𝐦𝐚𝐱(𝐝𝐩[𝐢 − 𝟏][𝐣], 𝐝𝐩[𝐢 − 𝟏][𝐣 −  𝐰[𝐢]] +  𝐯[𝐢])                                                          (𝟏𝟑) 

        where, dp[i − 1][j] represent the maximum value achieved by excluding item 𝑖. 
        dp[i − 1][j −  w[i]]  +  v[i] represents the maximum value achieved by including item 𝑖. 

Complete the table by considering all items and weight capacities. Initially implemented the Knapsack 

algorithm independently for our specific problem CVRP. Knapsack algorithms typically assume discrete values 

for items, which might not accurately model real-world scenarios where items can have continuous or fractional 

values. Then hybridized SARSA with the knapsack problem (SAKP). This integration combines reinforcement 

learning with the optimization problem of selecting items to maximize value while staying within a capacity 

constraint. Here's a general outline of how you could approach this combination: At each state, consider the 

current state's available items as candidates for selection. Solve the knapsack problem to select a subset of items 

that maximizes the value while staying within the knapsack's capacity. Use the Q-values to influence the item 

selection process, favoring actions that are more valuable based on Q-values. To do he Hybridization 

Mechanism: Combine the results of SARSA and the knapsack optimization to guide decision-making. One 

approach is to use Q-values to rank candidate items and then use the knapsack solution to make the final 

selection. Then select the action that leads to the highest expected cumulative reward, considering both Q-values 

and the knapsack selection. Therefore, while SARSA can aid in optimizing strategies or guiding exploration, 

the primary time complexity for solving the 0/1 Knapsack problem remains 𝑂(𝑛 × 𝑊) where 𝑛 refers to the 

number of items available in the 0/1 Knapsack problem and 𝑤 Represents the maximum weight capacity of the 

knapsack. 

5. Study Results  

Results were Illustrated by applying five separate mathematical models. In the waste collection schedule, it's 

essential to note that each hospital receives waste collection services twice a week. Vehicles are tasked with 

visiting each hospital two times during the week, with the first visit occurring after three days and the second 

visit after four days. However, there is a unique scenario involving the "National Liver Institute," with an index 

of 15 node which requires special attention. And this is due to the amount of waste generated during the vehicle 

visits approaches nearly 3 tons, which is equivalent to the total capacity of a single vehicle, this constitutes a 

fundamental constraint in the problem. Improved the implementation of the SARSA model by introducing a 

constraint for vehicle capacity, referred to as Capacity SARSA (CSARSA). This constraint posed a challenge 

in achieving near to optimal solutions. In Table 2 below, the meanings of the abbreviations used in the results 

are presented. 
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Table 2. Abbreviation of used Symbols 

Symbol Abbreviation 

V Number of vehicles 

S Depot (Directorate of Health Affairs) 

D Disposal Site (Kafr  Dawood Al-Sadat) 

N Hospital Node index from (1,2, … ,15) 

 

5.1 SARSA Result 

After estimating the SARSA algorithm to optimize this problem, the goal is to find the shortest route between 

hospitals while considering the amount of waste from each hospital. That means it may take this hospital in a 

route that achieve shortest route, but the capacity of vehicle reaches to maximum. Thus, this hospital must not 

be visited. However, another vehicle serves this non-visited hospital to achieve optimal load capacity and the 

shortest route. This problem aimed at achieving the objectives. CSARSA prioritizes the shortest path when the 

agent is located at a specific hospital, without considering its relationship with the depot or the hospitals that 

precede it. Aim to gather distinct routes for each hospital, emphasizing the connections between each hospital 

in the route, other hospital routes, the depot, and ultimately the disposal site. This process requires optimization 

to determine the number of vehicles needed, taking into consideration the capacity constraints of the vehicles 

as shown in Table 3. 

Table 3. Shortest route for each vehicle using CSARSA 

No. Vehicle Route in the week Cap Vehicle Route in the week Cap 

𝑽𝟏 S → 15 → D → S 3 S → 15 → D → S 3 

𝑽𝟐 S → 1 → 2 → D → S 2.376 S → 1 → 2 → D → S 2.46 

𝑽𝟑 S → 3 → 7 → 8 → 13 → D → S 2.367 S → 3 → 7 → 8 → 13 → D → S 2.175 

𝑽𝟒 S → 4 → 9 → 10 → D → S 1.646 S → 4 → 9 → 10 → D → S 1.766 

𝑽𝟓 S → 5 → 6 → D → S 0.875 S → 5 → 6 → D → S 0.902 

𝑽𝟔 S → 11 → 12 → D → S 0.846 S → 11 → 12 → D → S 0.9 

𝑽𝟕 S → 14 → D → S 0.582 S → 14 → D → S 0.657 

 

In Table 3, the first column represents the number of vehicles used to solve the problem with this algorithm. 

The second column represents the route of each vehicle from its departure from the depot, passing through 

nearby hospitals, until it reaches the waste disposal site during the first visit of the week. The third column 

represents the total waste capacity through the vehicle's route for visiting the hospitals specified in the second 

column. The fourth column represents the vehicle routes during the second visit in the same week, which means 

three days after the first visit. The fifth column represents the waste capacity generated by the hospitals during 

the second visit of the week. Seven vehicles were utilized to solve the hospital waste management problem. 

When programming CSARSA, the output is the shortest route for each hospital. These solutions for each 

hospital are then stored in a linked list. Then, the pointer was used to navigate between the equal nodes and 

connect the solutions to each other without repeating the same node twice. The process repeats until the solutions 

are integrated according to the equality of the specific nodes between different routes. Thus, it was found that 7 

vehicles efficiently address this problem. For example in the first (1st) visit , 𝑉2 initiates its weekly route from 

node S, then moves to node 1, followed by 2 , and finally, disposing of waste collection at node D before 

returning to the depot. The total capacity of 𝑉2 equal to 2.376 that near to 3 tons. The identical route of 𝑉2 is 

replicated during the second (2nd) visit, with the only variation being the capacity due to the different weekly 

amount of wastes from each hospital. 𝑉1 has a unique scenario where it serves the National Liver Institute 

hospital (node 15), and the vehicle visits it three times a week due to the total capacity reaching approximately 

8.5 tons. The algorithm might get stuck in local optima (suboptimal) and fail to explore less obvious, but better, 

solutions. All of the mentioned points are considered as disadvantages of this approach. To achieve an optimal 

solution for CVRP, it is recommended to combine SARSA with Dijkstra's algorithm or integrating it with the 

Knapsack problem solver. This integration aims to refine the solutions obtained from SARSA and enhance 

capacity utilization, ultimately leading to an optimal routing solution as presented in the upcoming sections. 
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5.2 Combination between SARSA and Dijkstra Result (𝑺𝑨𝑫𝑱) 

Dijkstra's algorithm provides deterministic and guaranteed optimal solutions. When dealing with capacity 

constraints in CVRP, ensuring that the initial routes are optimal in terms of distance can be crucial as shown in 

Table 4 by using only five vehicles. 

Table 4. optimal route for each vehicle using Dijkstra 

No. Vehicle Route in the week Cap Vehicle Route in the week Cap 

𝑽𝟏  S → 15 → D → S 3 S → 15 → D → S 3 

𝑽𝟐  S → 2 → 13 → D → S 2.095 S → 2 → 13 → D → S 1.961 

𝑽𝟑  S → 1 → 9 → 10 → 11 → 12 → D → S 2.32 S → 1 → 9 → 10 → 11 → 12 → D → S 2.517 

𝑽𝟒  S → 4 → 5 → 6 → 3 → 7 → D → S 2.934 S → 4 → 5 → 6 → 3 → 7 → D → S 2.946 

𝑽𝟓  S → 8 → 14 → D → S 1.343 S → 8 → 14 → D → S 1.436 

Table 4 illustrates the implementation of the Dijkstra algorithm for determining the shortest route in CVRP. For 

instance, 𝑉2 initiates its weekly route from depot node S, then moves to node 2, followed by 13, and finally, it 

collects waste at node D before returning to the depot. It's crucial to highlight that the capacity is 2.095, falling 

short of the complete 3 tons’ approximation. Similarly, the rest of the cases follow the same explanation expect 

𝑉1 ,which visits the National Liver Institute node. This is attributed to Dijkstra's prioritization of the shortest 

route when confronted with the choice between maximum load capacity and the shortest path. So, this is a 

significant limitation that discourages relying on Dijkstra in isolation. This combination of SADJ proves 

especially potent due to their complementary attributes. This combination can ensure that you exploit the known 

shortest paths while still allowing for exploration to discover potentially better paths. Table 5 illustrates the 

shortest route between hospitals using 5 vehicles while considering the vehicle's capacity constraints and the 

total capacity in tons for each vehicle route. 

Table 5. optimal route for each vehicle with total capacity using SADJ. 

No. Vehicle Route in the week Cap Vehicle Route in the week Cap 

𝑽𝟏  S → 15 → D → S 3 S → 15 → D → S 3 

𝑽𝟐  S → 1 → 2 → 13 → D → S 2.999 S → 1 → 2 → 13 → D → S 2.918 

𝑽𝟑  S → 4 → 9 → 11 → 12 → 7 → D → S 2.914 S → 4 → 9 → 11 → 12 → 7 → D → S 2.863 

𝑽𝟒  S → 10 → 5 → 6 → 8 → 3 → 14 → D → S 2.779 S → 10 → 5 → 6 → 8 → 3 → D → S 2.422 

𝑽𝟓  ____________________ 3 S → 14 → D → S 0.657 

 

Table 5 illustrate our estimations indicate the need for a fleet of five homogeneous vehicles to efficiently serve 

the waste disposal needs of the sixteen hospitals. For example, 𝑉2 follows a route from depot node S to node 1, 

then node 2, followed by node 13, and subsequently progresses towards node D. This represents the optimized 

shortest route for vehicle 𝑉2. Then  𝑉2 stops at node 13 instead of completing its route to search another nearest 

hospital. The vehicle reaches its maximum capacity, which is nearly 3 tons (2.999 tons). 𝑉2 initiates its first visit 

to hospitals after three days in the week, but the week remains unfinished. This next visit may include revisiting 

some hospitals or neglecting others, contingent on the vehicle's capacity. 𝑉2 subsequent visit occurs after four 

days from the initial one, with a total capacity of 2.918 tons. This variation in total capacity stems from the 

differences in the amount of waste extracted during each collection center. The contrast between the shortest 

routes followed by  𝑉4 and 𝑉5, in the case of 𝑉4 does not revisit the same hospital during its second visit, primarily 

because the amount of waste at hospital 14, if added to the previous nodes in the same route, would surpass the 

vehicle's capacity limit of 3 tons. Consequently, another dedicated vehicle is assigned to serve these additional 

waste collection needs. SADJ might find a solution quickly, but it may not be the best one. To overcome this 

problem, SARSA is integrated with knapsack dynamic programming. 

5.3 Combination of Q-learning and knapsack solving Result (𝑸𝑳𝑲𝑷) 
Implementing Knapsack using Dynamic Programming is a powerful technique for solving the 0/1 knapsack 

problem optimally, as shown in Table 6. 
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Table 6. optimal route for each vehicle using Knapsack problem 

No. Vehicle Route in the week Cap Vehicle Route in the week Cap 

𝑽𝟏  S → 15 → D → S 3 S → 15 → D → S 3 

𝑽𝟐  S → 1 → 2 → 13 → D → S 2.999 S → 1 → 2 → 13 → D → S 2.918 

𝑽𝟑  S → 4 → 5 → 7 → 14 → D → S 2.92 S → 4 → 5 → 7 → 14 → D → S 2.985 

𝑽𝟒  S → 10 → 9 → 11 → 12 → 6 → 3 → 8 → D → S 2.773 S → 10 → 9 → 11 → 12 → 6 → 3 → 8 → D

→ S 

2.957 

 

Table 6 illustrates the implementation of the knapsack algorithm to determine the shortest route in CVRP by 

using only four vehicles. For instance, 𝑉2 commences its weekly route from node S, progresses to node 1, then 

to node 2, followed by 13, and finally, move to node D. Significantly, the capacity is 2.999 nearly 3 tons. This 

pattern is repeated in the second visit of the week. The remaining cases follow a similar explanation, except for 

𝑉1 that visit National Liver Institute hospital. Then implement SARSA with the Knapsack Problem (SAKP). 

Dynamic programming algorithms guarantees an optimal solution because they consider all possible 

combinations of sub problems and systematically find the best solution based on previously computed sub 

problem results according to SARSA exploration to discover optimal policies through trial and error as shown 

in Table 7. 

                                              Table 7. optimal route for each vehicle using SAKP. 

No. Vehicle Route in the week Cap Vehicle Route in the week Cap 

𝑽𝟏  S → 15 → D → S 3 S → 15 → D → S 3 

𝑽𝟐  S → 1 → 2 → 13 → D → S 2.999 S → 1 → 2 → 13 → D → S 2.918 

𝑽𝟑  S → 4 → 5 → 6 → 7 → 3 → D → S 2.934 S → 4 → 5 → 6 → 7 → 3 → D → S 2.946 

𝑽𝟒  S → 10 → 9 → 11 → 12 → 9 → 14 → D → S 2.759 S → 10 → 9 → 11 → 12 → 9 → 14 → D → S 2.996 

 

Table 7 showcasing the seamless integration of SAKP to address the prevailing challenge. Our estimations 

indicate the need for a fleet of only four homogeneous vehicles to efficiently serve the waste disposal needs of 

the sixteen hospitals. For example 𝑉2 follows a route from collection center node S to node 1, then node 2, 

followed by node 13, and subsequently progresses towards node D. This represents the optimized shortest route 

for vehicle 𝑉2. Then  𝑉2 stops at node 13 instead of completing its route to another hospital. The vehicle reaches 

its maximum load capacity, which is nearly 3 tons (2.999 tons). During 𝑉2 second visit of the week, it revisit 

the same hospitals with different load capacity 2.918 tons. It's important to note that each of the homogeneous 

vehicles has now approached a near to maximum capacity unlike the previous mathematical model. The 

knapsack dynamic programming approach, or SAKP, utilized only four vehicles, in contrast to Dijkstra, SADJ, 

or CSARSA. 

6. Discussion  
The differences between the algorithms presented above are discussed in the results section. The implementation 

of SARSA to serve our problem with respect to capacity vehicle routing problem. But there is some 

disadvantage, because CVRP can involve a large number of possible states and actions, leading to a high-

dimensional Q-table. This can make learning and convergence computationally expensive and slow. SARSA 

involves a trade-off between exploration (trying new routes) and exploitation (choosing the best-known routes). 

Striking the right balance can be challenging, especially when the number of possible routes is vast. Comparing 

the five algorithms, it is observed that CSARSA requires 7 vehicles in week one to serve hospital wastes based 

on vehicle capacity and the amount of waste at each hospital. But Dijkstra and SADJ need from 4 to 5 vehicles 

in week one to serve wastes of hospitals.  But Knapsack and SAKP need only 4 vehicles to serve the wastes of 

hospitals. If solving the problem using the maximum number of vehicles obtained from the implemented 

approach (CSARSA), which is seven, and then assigning 𝑉1 as the name of the vehicle serving node 15 for each 

approach, considering the number of vehicles already in use in each approach 

A reduction in the number of vehicles used signifies an enhancement brought about by the proposed 

mathematical model. Opting for a smaller fleet of vehicles offers distinct preferable, because it saves on vehicle 

costs, driver expenses, vehicle maintenance, and fuel costs. It should be highlighted that with SAKP, the load 

capacity of vehicles consistently approaches 3 tons in all cases, contrasting with SADJ and CSARSA. All of 

these factors can be a burden on the government's budget. Therefore, reducing these expenses is advantageous 

for the budget of the Ministry of Health. Therefore, SAKP is a superior approach compared to SADJ and 

CSARSA. When the homogeneous fleet of vehicles selects the shortest route for a group of hospitals, it becomes 

crucial to estimate both the total distance traveled by each vehicle and the associated time in five algorithms as 

illustrated in Figure 3,4,5 and 6. 
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             Figure 3. Distance estimated per vehicles in 𝟏𝒔𝒕 visit                      Figure 4. Distance estimated per vehicles in 𝟐𝒏𝒅 visit 

 
 

  

   Figure 5. Time consumed per vehicles in  𝟏𝒔𝒕 visit                          Figure 6. Time consumed per vehicles in 𝟐𝒏𝒅 visit 

 
Figures (3, 4, 5 and 6) depict the total distance per kilometer and the total time per minuets covered by each 

vehicle during both the initial and subsequent visits within the same week. In the two figures, observe the 

number of vehicles visiting hospitals to collect waste while achieving the shortest route. These vehicles start 

their journey from the depot, follow the most efficient route, reach the disposal site, and then return to the depot 

based on the applied algorithm. To estimate the total distance and time traveled between each node, Google 

Maps was utilized. In Figure (3) and (4) the outcomes of implementing five algorithm individually remained 

consistent during the first and second visits. Both methods prioritize finding an optimal solution based on 

capacity, lacking the trial-and-error iterations seen in SARSA that enhance the solution by aiming to achieve 

optimal capacity with the shortest route. In Figure (3), SAKP stands out as the superior option due to its 

minimized distance consumption. In Figure (4) show total distance in the 2nd visit. It is noted that 𝑣4 has the 

longest recorded distance. However, this is not a drawback as it contributes to the reduction in the number of 

vehicles used. It efficiently collects the remaining available waste from hospitals along its route instead of 

employing another vehicle. In the case of 𝑣1 the distance recorded remains consistent across all five applied 

algorithms. This uniformity is due to the special circumstances of node 15, where the vehicle makes three visits 

in the week, determined by the amount of extracted waste. The distance covered by each approach's vehicle 

corresponds to the time consumed for it. Figure (5) and (6) illustrated the time consumed in the first and the 

second visit of each vehicle based on applied approach according to the estimated distance. In conclusion, SAKP 

stands out as the best choice in all visitation scenarios, utilizing the minimal number of vehicles, achieving fuel 

savings, covering the shortest distance, and consuming less time overall. The Ministry of Health enters into 

agreements with companies to lease a group of vehicles for waste transportation services from hospitals to the 

waste disposal site in Kafr Dawood Al-Sadat. It's worth noting that when these vehicles make trips to hospitals, 

they calculate their charges based on the weight of the waste carried. The cost per ton is a fixed value equal to 
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1$. This amount is considered the cost for handling and transporting the load to the incineration facility as 

shown in Figure 7 and 8. 

 

  
              Figure 7. cost for each vehicles in 𝟏𝒔𝒕 visit                                              Figure 8. cost for each vehicles in 𝟐𝒏𝒅 visit 

 
In Figures (7) and (8), the total cost of transporting hospital wastes to the disposal site is depicted twice a week. 

As mentioned earlier 𝑣1 is special case.  For example 𝑣2 has the same route and cost in Knapsack, SADJ and 

SAKP.  In the first and second visit 𝑣2 follows the shortest route while considering its load capacity, resulting 

in a total cost of 3.05 $ and 2.99 $ for both the knapsack ,SADJ and SAKP respectively in contract Dijkstra and 

CSARSA. For instance, the shortest route, which goes from depot to Quwisna General Hospital, then to Qasr 

Hospital, followed by Al-Shuhada Central Hospital, and finally to the disposal site, corresponds to specific 

amounts of waste the first visit for each hospital as follows:  0 → 0.904 → 1.472 → .623 → 0 → 0  per ton. 

The total cost is calculated as 0 → 0.909 → 1.493 → 0.649 → 0 → 0 per$. However, during the second visit, 

the vehicle still adheres to the same optimal route, with each hospital having distinct capacities, as detailed: 

0 → 0.957 → 1.503 → .458 → 0 → 0  per ton. The total cost is calculated as 0 → 0.974 → 1.525 → 0.487 →
0 → 0 per$.  But in the first visit, the shortest route of Dijkstra 0 → 1.472 → .623 → 0 → 0 per ton. The total 

cost is calculated as 0 → 1.493 → 0.649 → 0 → 0 per$. However, during the second visit, hospitals capacity 

as detailed: 0 → 1.503 → .458 → 0 → 0  per ton. The total cost is calculated as 0 → 1.525 → 0.487 → 0 → 0 

per$.  But in the first visit, the shortest route of CSARSA 0 → 0.904 → 1.472 → 0 → 0 per ton. The total cost 

is calculated as 0 → 0.909 → 1.493 → 0 → 0 per$. However, during the second visit, hospitals capacity as 

detailed:0 → 0.957 → 1.503 → 0 → 0  per ton. The total cost is calculated as0 → 0.974 → 1.525 → 0 → 0 

per$.  

7. Conclusions 

Medical waste poses a significant environmental burden in terms of pollution and disease transmission. 

Economically, it requires incineration. These incinerators should be located in secure locations away from 

populated areas to protect public health. Other factors to consider include the need for specific types of transport 

vehicles designated by the Ministry of Health, as well as the requirement for well-trained drivers to handle waste 

and transport it from hospitals to disposal sites, especially in cases of injuries or external factors during transport. 

These vehicles have a fixed capacity, typically set at 3 tons by the Ministry of Health. The vehicles follow 

specific routes to collect waste from hospitals, with a priority given to nearby hospitals before moving on to 

dispose of the collected waste. These issues are classified as the vehicle routing problem with capacity 

constraints. Three distinct algorithms were employed: SARSA, an integration of SARSA and Dijkstra, and an 

integration of SARSA with a knapsack solver. The SAKP model shows that the vehicles take the shortest routes 

between hospitals, reach maximum loads close to 3 tons, minimize costs, reduce time, and use fewer vehicles 

compared to other mathematical models. For future work, when dealing with a larger number of hospitals or 

large-scale problems, alternative learning methods should be considered besides SARSA and Q-learning. These 

methods are necessary because they often do not yield accurate results, and the agent's learning may not be 

precise in most cases. Therefore, using other artificial intelligence algorithms, such as deep neural networks, 

Double DQN, DDQN and deep learning approaches could be beneficial. Additionally, time windows can be 

incorporated to prioritize hospital visits and determine the optimal time for waste collection. Furthermore, a 

model can be developed by dividing hospitals into zones and utilizing vehicles with different capacities, 
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enabling the sharing of cluster zones. 
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تحسين جمع النفايات الطبية بواسطة التعلم التعزيزي ضمن توجيه المركبات ذات السعة 
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 ملخص البحث 

الذكاء الاصطناعي يسُتخدم بشكل متزايد في مجالات متعددة، بما في ذلك إدارة النفايات الطبية الخطرة. تشكل النفايات الطبية عبئاً 

ة عن المناطق السكنية. تم التخلص منها بحذر، ويفضل أن يكون ذلك في مناطق بعيداقتصاديًا ومخاطرًا على الصحة العامة، ويجب 

مستشفى حكومي في محافظة المنوفية وموقع التخلص الوحيد في كفر داود، بالإضافة إلى  15جمع بيانات حول النفايات الناتجة من 

جيه المركبات ذات السعة المحدودة، والتي تعتبر مشكلة نقطة تجميع مركزية لمركبات نقل النفايات. تعالج هذه الدراسة مشكلة تو

تم تخصيص مركبات محددة لجمع النفايات من المستشفيات ونقلها إلى مركز التخلص، بهدف  .(صعبة من الناحية الحسابية) معقدة

قنيات التعلم التعزيزي، إيجاد أقصر طريق مع تحقيق أقصى استفادة من سعة المركبة، التي تقتصر على ثلاثة أطنان. تم تطوير ت

حيث تم معاملة المركبة كوكيل مدرب على اختيار أقصر وأقل طريق تكلفة بين المستشفيات. تم تنفيذ وتحسين خوارزمية "سارسا" 

)خوارزمية التعلم الذاتي(. تشمل الحلول خوارزميات "سارسا" )خوارزمية التعلم الذاتي( و"ديكسترا" و"برمجة ديناميكية 

ونهجًا هجينًا يجمع بين "سارسا" و"ديكسترا" و"سارسا" مع "برمجة ديناميكية للحقيبة". أظهرت النتائج أن النهج الهجين  للحقيبة"،

بين "سارسا" و"برمجة ديناميكية للحقيبة" هو الأكثر فعالية، حيث يقلل من عدد المركبات المستخدمة لنقل النفايات ويزيد من سعة 

الرياضي لإدارة   طرق بين جميع المستشفيات. وأخيرًا، تم حساب تكاليف النقل لاستكمال النموذجالمركبة، مما يحدد أقصر ال

. النفايات الطبية  
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