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Abstract 

Parkinson's disease (PD) is a chronic and progressive neurodegenerative disorder that affects movement. Studies 
have shown that speech difficulties can appear early in PD, suggesting their potential use as an early diagnostic 
indicator. Our proposed method investigated a hybrid approach for Parkinson’s detection based on Pearson 
Correlation (PC) and Mutual Information (MI). The approach combines PC and MI to identify the relevant features 
in the speech signals, utilizing these features for training five machine learning models, namely XGBoost, GBoost, 
CatBoost, AdaBoost, and LightGBM. Two datasets obtained from UCI repository were utilized for evaluation. To 
overcome the challenge of imbalanced classes in the datasets, synthetic minority oversampling technique (SMOTE) 
was implemented to achieve a more balanced representation. The proposed PCMI approach selects 10 features from 
dataset1 and 55 features from dataset2. The results show that CatBoost with SMOTE and PCMI achieved an accuracy 
of 97.3% using hold-out method 75:25 and 97.2% using 10-fold CV method for dataset1, while LightGBM with 
SMOTE and PCMI approach achieved an accuracy of 95.6% using hold-out method 60:40 and 97.6% using 10-fold 
CV method for dataset2.  
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1. Introduction 

Parkinson’s disease (PD) presents significant challenges in early diagnosis, often leading to delayed 
treatment initiation and a consequent impact on patient outcomes [1]. The hallmark motor symptoms of PD, 
such as tremors [2], muscle stiffness [3], reduced movement [4], and instability while walking [5, 6], typically 
manifest after substantial neurodegeneration has occurred. This delay underscores the critical need for reliable 
early detection methods. 
 

Speech difficulties [7-11], including changes in voice quality, articulation, and rhythm, are common among 
individuals with PD. Importantly, these speech impairments often emerge in the prodromal phase of the disease, 
preceding overt motor symptoms by several years. Therefore, analyzing speech signals holds promise as a non-
invasive and potentially early indicator for PD. 

 
Despite advancements in neuroimaging and clinical assessments, current diagnostic methods for PD 

primarily rely on subjective evaluations and late-stage symptom presentations. This limitation highlights a clear 
gap in diagnostic capabilities, particularly in detecting PD during its prodromal phase when neuroprotective 
interventions may be most effective. 
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This study aims to address this gap by developing a computer-aided diagnosis (CAD) system to assist in PD 
diagnosis, providing a supplementary opinion to physicians. This system aims to reduce diagnostic errors, 
streamline the diagnostic process, and improve efficiency. 
 

Previous research in PD diagnosis has primarily focused on integrating effective classifiers with feature 
selection techniques to enhance diagnostic accuracy. The choice of both the feature selection method and 
classifier plays a crucial role in the outcomes of PD diagnosis.  However, the previous research suffers from the 
following limitations: 
 

• Imbalanced Datasets: affect model generalization ability. 
• Suboptimal feature selection: Filter methods may occasionally overlook important features because 

the interconnection between features is not taken into account while ranking features. 
• Computation time: Filter, Wrapper, and Hybrid methods may expand the training period and 

increase complexity. 
 

In this study, an approach for Parkinson’s disease detection is proposed utilizing a hybrid feature selection 
method combining Pearson Correlation (PC) and Mutual Information (MI). This method aims to identify and 
leverage the most relevant features extracted from speech signals, enhancing the accuracy of machine 
learning models used for classification. By integrating PC and MI, we prioritize features that exhibit both 
low correlation and high informativeness, thus improving the discriminatory power of the models. The 
experimental evaluation involved training five machine learning models—XGBoost, LightGBM, CatBoost, 
GBoost, and AdaBoost—using two distinct datasets obtained from the UCI repository. To address the 
challenge of imbalanced classes within these datasets, the Synthetic Minority Oversampling Technique 
(SMOTE) was applied to achieve a more balanced representation of the target classes. The proposed PCMI 
approach selects 10 features from dataset1 and 55 features from dataset2.  

 
The results show that CatBoost with SMOTE and PCMI achieved an accuracy of 97.3% using hold-out 

method 75:25 and 97.2% using 10-fold CV method for dataset1, while LightGBM with SMOTE and PCMI 
approach achieved an accuracy of 95.6% using hold-out method 60:40 and 97.6% using 10-fold CV method 
for dataset2, highlighting the effectiveness of this approach across different validation strategies and datasets. 

 
The core contributions of this study are: 
 
• Firstly, the Parkinson’s disease speech datasets used in this study are highly imbalanced. In the first 

dataset, 147 samples out of 195 are from Parkinson’s patients. In the second dataset, 564 samples out 
of 756 are from Parkinson’s patients. Therefore, SMOTE has been used to handle the class imbalance 
problem. 
 

• A pioneering hybrid technique dubbed "PCMI" has been introduced, combining Pearson Correlation 
with Mutual Information to identify a subset of features that exhibit both low correlation and high 
informativeness.  
 

• The performance of five classifiers namely XGBoost, GBoost, CatBoost, AdaBoost, and LightGBM 
was evaluated on reduced feature subset and the best classifier was found as CatBoost for PD diagnosis 
problem. 

 
• The proposed method is better than the other methods with respect to computational cost since few 

number of speech features were used. 
 

     This study is structured as follows: Section 2 offers a brief overview of feature selection, feature scaling, 
and model selection, Section 3 covers related work, Section 4 outlines proposed approach, Section 5 
presents experimental results, and Section 6 concludes proposed work. 
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2. Background  

2.1 Feature Selection 

     Feature selection is a critical step in machine learning, involving the identification and extraction of the 
most relevant features from a dataset to improve model performance and interpretability. By selecting the 
most informative features, redundant or irrelevant ones are eliminated, reducing the dimensionality of the 
dataset and preventing overfitting [12].  

2.1.1. Pearson Correlation (PC)  
     PC [13, 14], denoted by r, is a statistical measure that quantifies the strength and direction of a linear 
relationship between two continuous variables. It ranges from -1 to +1, where +1 indicates a perfect positive 
linear relationship, -1 indicates a perfect negative linear relationship, and 0 indicates no linear relationship.  

                                                            r = ∑(Xi−X�)(Yi−Y�)
�∑(Xi−X�)2 ∑(Yi− Y�)2

                                                           (1)                                                             

where Xi and Yi are individual data points, X� and Y� are the means of  X and Y, respectively. 

2.1.2. Mutual Information (MI)  
      MI [13-17] quantifies the amount of information obtained about one random variable through the 
observation of another. It measures the degree of dependence between two variables by assessing how much 
knowing one variable reduces uncertainty about the other. Formally, mutual information between two 
random variables X and Y is defined as: 

                                                      I(X; Y) = ∑ ∑ p(x, y) log p(x,y)
p(x) p(y)x∈Xy∈Y                               (2)                                                                                           

where 𝑝𝑝(𝑥𝑥,𝑦𝑦) is the joint probability distribution of X and Y, and 𝑝𝑝(𝑥𝑥) and p(y) are the marginal probability 
distributions of X and Y, respectively. 
 

2.2 Feature Scaling 

     Standard scaling, also known as z-score normalization, used to standardize the scale of features within a 
dataset. It involves transforming the data so that it has a mean of zero and a standard deviation of one. This 
process ensures that all features have the same scale, preventing features with larger magnitudes from 
dominating the analysis or model training process. The equation for standard scaling is [18]: 

                                                             z =  �x − mean(x)�   
stdev(x)  

                                                             (3)                                                

where x is the input feature, mean(x) is the mean of the input feature, stdev(x) is the standard deviation of 
the input feature, and z is the standardized feature. 

2.3 Model Selection  

    We implemented five ML models – XGBoost, GBoost, CatBoost, AdaBoost, and LightGBM. These 
models were selected based on their strengths in handling complex datasets, their ability to handle both 
numerical and categorical features efficiently, and their performance in boosting weak learners to create 
robust classifiers. 

 
2.3.1 XGBoost 

     XGBoost is tailored specifically for maximizing both model effectiveness and computational speed. It 
fully utilizes memory and hardware, offering advantages in algorithm enhancement, fine tuning, and 
deployment. the equation for objective function is as follows [19]: 
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                                                           Obj(β) =  Loss(β) +  Reg(β)                                         (4)                                                                     

where 𝑜𝑜𝑜𝑜𝑜𝑜 represents objective function, Loss stands for training loss that quantifies the error or disparity 
between predicted values and actual target values, and 𝑅𝑅𝑅𝑅𝑅𝑅 denotes regularization term that address 
overfitting issues and facilitate the model’s efficient generalization to unseen data. 
 

2.3.2 GBoost  
     GBoost is a boosting algorithm that sequentially fits a classifier to the residual errors of the previous 
classifier. The equation for GBoost is as follows [20, 21]:     

                                                            F(x) =  FT−1(x) +  γTfT(x)                                                  (5)                       

where F(x) represents prediction of classifer for input x,  FT−1(x)  represents output of previous T-1 
classifier, γT represents learning rate for the T-th model, and fT(x) represents output of the T-th classifier 
for input x. 
 

2.3.3 CatBoost 
    CatBoost is a boosting algorithm that uses a novel gradient boosting scheme known as “Ordered 
Boosting”, contributing to mitigating overfitting and enhancing overall accuracy by incorporating categorical 
features directly into the model. The equation for CatBoost is as follows [22]: 

                                                           F(x) = ∑ αt Ft(x)N
t=1                                                                            (6) 

where F(x) represents overall prediction of the ensemble for input x. N represents total number of weak 
learners (trees) in the ensemble. 𝛼𝛼𝑡𝑡 represents weight given to each tree.  𝐹𝐹𝑡𝑡(𝑥𝑥) represents prediction of t-th 
tree. 
 

2.3.4 AdaBoost 
    AdaBoost is a boosting algorithm designed to create a robust classifier by combining multiple weak 
learners. The approach involves iterative training of weak learners on reweighted versions of data. During 
each iteration, weights are adjusted to give more emphasis to misclassified examples from the preceding 
iteration. The equation for AdaBoost is as follows [23]:   

                                                           F(x) =  sign(∑ αihi
𝑁𝑁
𝑖𝑖=1 (x) )                                                        (7)                          

where F(x) represents prediction of robust classifier for input x, N represents number of iterations, 
αi represents weight given to each tree, and h𝑖𝑖  (x) represents prediction of i-th tree. In each iteration, a tree 
is trained to minimize the weighted error on the training data, and its weight αi is determined based on its 
performance. The robust classifier represents a sum of the trees, where the weights are determined by their 
individual performance and the number of iterations. 

 
2.3.5 LightGBM 

     LightGBM is a boosting algorithm designed to be efficient and scalable, with the ability to handle large 
amounts of data [24, 25]. The algorithm works by building decision trees in a leaf-wise fashion, where each 
split is chosen to maximize the reduction in the loss function. The equation for LightGBM is as follows: 

                                                           F(x) = ∑ wiGi(x)N
i=1                                                                          (8) 

where F(x) represents final prediction for a given input x, N represents number of trees (weak learners) in 
the ensemble, wi represents weight given to i-th tree, and Gi(x) represents prediction of i-th tree for input x. 
wi  is determined based on its performance and the regularization parameters. LightGBM also handling 
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missing values, categorical features, and supports parallel and GPU acceleration to further improve its 
efficiency. 

3. Related Work  

Prior research applied three techniques for selecting pertinent features, including Filter, Wrapper, and 
Hybrid methods [26]. 
 
3.1 Filter Methods focus on selecting or ranking features based on their inherent characteristics [27]. 

Yaman et al. [28] developed a statistical pooling method for PD detection with the help of vowels. The 
replicated acoustic features Parkinson’s disease dataset was used in the study having 240 samples and 
44 features vectors. The 44 features in the dataset were increased to 177 by the proposed method and 
then the Relief method was used for selecting the top-weighted features and 66 features were selected. 
For classification SVM and KNN algorithms were used and obtained 91.25% and 91.23% accuracy,  
respectively. Although they obtained high classification accuracies, they used 66 features. Therefore, 
their computational cost is high. Tuncer et al. [29] developed a method for the detection of PD using 
vowels. UCI PD classification dataset is used in this paper. The preprocessing of data was done by 
MAMA tree, then by using SVD, 122 features were extracted from total 754 features, and finally by 
relief-based feature selection method 50 most discriminative features were extracted and fed into eight 
different classifiers for classification of Parkinson's disease patients from healthy patients. The 
classification accuracy of 92.46 % is achieved by using KNN classifier and by doing post-processing 
the accuracy was increased to 96.83%. Bchir et al. [30] proposed a Gaussian mixture model (GMM) 
based classification strategy for Parkinson’s disease diagnosis. This paper made use of Parkinson’s 
speech data, which consisted of 756 voice measurements from 252 people. The mRMR feature selection 
technique chose the best 50 features out of 752. The performance measures were accuracy and MCC. 
When the suggested GMM model’s performance was compared to that of other classifiers, the proposed 
model outperformed with an accuracy of 0.8912 and an MCC of 0.7060. Although 50 features are 
selected but the performance is limited. Ashour et al. [31] presented a two-sequential feature selection 
framework for Parkinson’s diagnosis. This paper made use of Parkinson’s speech data, which consists 
of 756 voice measures from 252 people. PCA and eigenvector centrality approaches were used to pick 
features. SVM-Cubic was used to accomplish the classification, and a reduced feature subset yielded 
94% accuracy. Although they obtained high classification accuracy, they used 350 features. Therefore, 
their computational cost is high. 
 

3.2 Wrapper Methods create different combinations of features and assess their effectiveness by feeding 
them into the model. Evaluation of the subsets is conducted through a performance measure calculated 
on the resulting model.  Senturk [32] presented a machine learning algorithms-based diagnosis system 
for Parkinson’s disease. Feature selection was done by RFE and feature importance methods. The dataset 
used consists of 23 features and 195 instances. The RFE feature selection technique chose the best 13 
features out of 23.  Regression tree, ANN, and SVM were used as classifiers. The combination of RFE 
with the SVM classifer shows 93.84% accuracy. Goyal et al. [33] demonstrate how a two-stage feature 
selection model outperforms existing methods. This work employed the UCI Parkinson’s speech dataset, 
which has 19٥ cases and 2۳ features. An SVM classifier was employed to classify the data, and a three-
fold cross-validation procedure was applied. Only nine features were chosen from the proposed 
GA+RFE technique, with the SVM classifier achieving the best accuracy of 88.71 %. Although 9 
features are selected but the performance is limited. Lamba et al. [34] presented a Parkinson’s disease 
detection system. Two speech datasets have been used in the design of this system: The first is an Italian 
Parkinson’s Voice & Speech dataset, and the other is Mobile Device Voice Recordings at King’s College 
London dataset. Seventeen acoustic features have been generated from the voice samples available in 
the datasets using Parselmouth library. In addition, based on the significance of features, the eight most 
significant features have been used in the design of the model. These features have been selected using 
genetic algorithm method. Four classifiers, k-nearest neighbors, XGBoost, random forest, and logistic 
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regression, have been used during classification stage. The accuracy, sensitivity, f-measure, specificity, 
and precision parameters have been used for the analysis of the designed system. The combination of a 
genetic algorithm-based feature selection approach and logistic regression classifier has given 100% 
accuracy on Italian Parkinson’s Voice & Speech dataset. The same feature extraction and classifier 
combination on the Mobile Device Voice Recordings at King’s College London dataset have attained 
an accuracy level of 90%. Elshewey et al. [35] utilized Bayesian optimization (BO) to optimize the 
hyperparameters for six machine learning models, RF, SVM, NB, LR, RC, and DT to determine the 
categorization method that is both the most effective and precise for PD. The dataset used consists of 23 
features and 195 instances. The experimental results demonstrated that the SVM model achieved the 
best outcomes when compared with various ML models before and after the process of hyperparameter 
tuning, with an accuracy 92.3% obtained using BO. 

 
3.3 Hybrid Methods integrate two or more feature selection techniques to refine and optimize the selected 

feature set. Lamba et al. [36] presented a speech signal-based hybrid Parkinson’s disease diagnosis 
system for early diagnosis. To achieve this, the authors have tested several combinations of feature 
selection approaches and classification algorithms and designed the model with the best combination. 
To formulate various combinations, three feature selection methods such as mutual information gain, 
extra tree, and genetic algorithm and three classifiers namely naive bayes, k-nearest-neighbors, and 
random forest have been used. To analyze the performance of different combinations, the dataset used 
consists of 23 features and 195 instances. The combination of genetic algorithm and random forest 
classifer has shown the best performance with 95.58% accuracy. Lamba et al. [37] presented a hybrid 
MIRFE feature selection approach based on mutual information gain and recursive feature elimination 
methods. A Parkinson’s disease classification dataset consisting of 756 voice measures of 252 
individuals was used in this study. The proposed feature selection approach is compared with the five 
standard feature selection methods by random forest and XGBoost classifier. The proposed MIRFE 
approach selects 40 features out of 754 features. MIRFE with XGBoost and RF achieved an accuracy 
of 93.88% and 92.72%, respectively. Abdel-fattah et al. [38] proposed a hybrid approach based on the 
Emperor Penguin Colony (EPC) swarm algorithm with Correlation-based Feature Selection (CFC), 
which is called CEPC. A Parkinson's disease classification dataset consisting of 756 voice measures was 
used in this study. Before using the proposed approach, five classification algorithms were used to 
compare accuracy results. Also, the ensemble classifier has been used in this paper. The CEPC proposed 
approach provides an improvement in the accuracy of results. An accuracy of 89.4% is obtained by the 
ensemble classifier. Chawla et al. [39] investigated methods for detecting Parkinson's disease using 
Nature Inspired Feature Selection (NIFS) with the Zebra Optimization Algorithm and Recursive Feature 
Elimination Cross Validation (RFECV). They utilized a vocal feature-based dataset for PD detection, 
reducing the number of features from 754 to 40. The classification results were obtained for two cases: 
a 70:30 train-test split and tenfold cross-validation, using 11 different classifiers. The Gaussian Process 
classifier showed the best accuracy, with values of 96% and 97.07% for the two cases, respectively. Al-
Najjar et al. [40] presented a hybrid grey wolf and whale optimization for enhanced Parkinson’s 
prediction based on machine learning models using biomedical sound. They utilized a vocal feature-
based dataset for PD detection, reducing the number of features from 23 to 11. Six models, neural 
network, Quest, Chi-squared Automatic Interaction Detection, support vector machine, CR tree, and 
logistic regression, have been used during classification stage. The results showed that the CR tree 
performed better than all models, reaching 95 % for accuracy. 
 

     Although high classification rates were obtained in the literature for ML based diagnosis of PD, either 
they used many features (like [28, 31]) which increases computation time or the extraction of the features 
were hard even they use few features (like [39, 40]). Therefore, indirectly, the computation time is again 
high. In this paper, we aim to decrease computation time via less number of effective features. 
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4.  Methodology 

As shown in Fig. 1, the discussed approach for speech-based Parkinson's Disease (PD) detection consists 
of five stages: (1) Data Augmentation, (2) Feature Selection, (3) Feature Scaling, (4) Model Selection, and 
(5) Evaluation of Models’ Performance. Two datasets obtained from the UCI repository are used in this work. 
To handle imbalanced data, the Synthetic Minority Over-sampling Technique (SMOTE) is applied. For 
feature selection, a hybrid FS method called "PCMI" has been introduced, combining Pearson Correlation 
with Mutual Information to identify a subset of features that exhibit both low correlation and high 
informativeness. The selected features are then standardized using standard scaling. These features are fed 
into different classifiers, including XGBoost, LightGBM, CatBoost, GBoost, and AdaBoost. Finally, the 
detection performance is evaluated using metrics such as accuracy, recall, precision, F-score, and AUC. This 
comprehensive approach aims to enhance the efficiency and accuracy of PD detection using speech-based 
features. 

 
Fig. 1 Proposed diagnostic system 

4.1 Data Augmentation  
      To overcome the challenge of imbalanced classes in the datasets, synthetic minority oversampling 
technique (SMOTE) was implemented to achieve a more balanced representation. This technique aids in 
mitigating the impact of imbalanced datasets on model training, particularly in scenarios where one class is 
significantly underrepresented. By creating synthetic examples that resemble the minority class instances, 
SMOTE contributes to better generalization, enhances overall model performance, and mitigates overfitting 
[41].   As shown in Fig. 2, the red-colored points are synthetic; it is noticed that all these points are lying    
between the boundaries of the original points, which gives a more accurate, reliable representation.  
Algorithm 1 shows SMOTE steps. Table 1 shows the datasets before and after the use of SMOTE. It is noted 
that the classes of the minority classes (healthy) became equal to the classes of the majority (Parkinson). 

 
Table 1. SMOTE method for balancing the datasets 

 
Datasets Dataset1 Dataset2 
Classes Healthy Parkinson Healthy Parkinson 
Before SMOTE 48 147 192 564 
After SMOTE 147 147 564 564 
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Fig. 2 Oversampling minority classes [42] 

 
Algorithm 1 
 
Inputs:  

-  Minority class samples (X_min) 
-  Number of synthetic samples to generate (N) 
-  Number of nearest neighbors to use (K) 
 

Output:  
- Augmented dataset with synthetic samples 

 
Function SMOTE (X_min, N, K) 

1. Initialize an empty list for synthetic samples, S. 
2. For each minority sample x_i in X_min: 

    a. Find the k nearest neighbors of x_i. 
    b. For each neighbor x_j (where j = 1 to k): 
        i. Randomly select a neighbor x_j. 
        ii. Compute the difference vector: diff = x_j - x_i. 
        iii. Multiply diff by a random number between 0 and 1: gap = random(0, 1). 
        iv. Create the synthetic sample: synthetic_sample = x_i + gap * diff. 
        v. Add synthetic_sample to the list S. 
        vi. Repeat until N synthetic samples are generated. 

3. Return the original dataset augmented with the synthetic samples from S. 
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4.2 Proposed PCMI Method 
 

     The Pearson Correlation is calculated between all pairs of features in the dataset. If the correlation 
coefficient between two features is above a certain threshold, then the two features are considered to be 
correlated. The correlated features are then removed from the dataset by dropping the columns that contain 
them. This can solve the redundancy problem. Redundancy occurs when two or more features provide the 
same information. This can be a problem for machine learning models because it can lead to overfitting. By 
removing correlated features, redundancy in the dataset can be reduced and the performance of the model 
can be improved. Next, the Mutual Information of each feature is calculated. Mutual Information is a measure 
of how much information a feature provides about the target variable. The features with the highest Mutual 
Information are considered to be the most important features. The features with the highest Mutual 
Information are then selected. Algorithm 2 shows pseudo code of PCMI method. 
 
 

Algorithm 2 
 
Inputs: 

- X_T: input feature matrix  
- y_T: target variable  
- corr_threshold: Pearson correlation threshold (float) 
- mi_threshold: mutual information threshold (float) 

 
Parameters: 

- corr_matrix: Pearson correlation matrix 
- corr_features: set of correlated features (set) 
- mi_scores: mutual information scores  
- mi_features: set of features selected by mutual information (set) 
- selected_features: set of final selected features (set) 

 
Output: 

- selected_features: set of final selected features(set)  
 
Steps: 

1. Compute Pearson correlation matrix corr_matrix = X_T. corr ( ) 
2. Initialize empty set corr_features = set ( ) 
3. For each column i in corr_matrix: 

a. For each previous column j up to i-1: 
i. If abs (corr_matrix. iloc [i, j]) > corr_threshold: 
1. Add the name of column i to corr_features 

4. Drop the correlated features from X_T using X_T = X_T. drop (corr_features, axis=1) 
5. Compute mutual information scores using mi_scores = mutual_info_classif (X_T, y_T) 
6. Initialize empty set mi_features = set ( ) 
7. For each score i in mi_scores: 

a. If i > mi_threshold: 
1. Add the name of the corresponding column in X_T to mi_features 

8. Set selected_features = mi_features 
9. Return selected_features 
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4.3 Evaluation Metrics  

The performance of models is evaluated by the following metrics:  

                                           Accuracy =   (TP +  TN) / (TP +  TN +  FP +  FN)                                 (9)               
                                                   Recall =    TP / (TP +  FN)                                                                  (10)                                      
                                           Precision =  TP / (TP +  FP)                                                               (11)                                               
                                                   F − score =    2 ×  (precision ∗  recall) /  (precision +  recall)             (12)                           
                                                   AUC = ∑ 1

2
(FPRi+1 − FPRi) × (TPRi + TPRi+1)n−1

i=1                                   (13)    
                                                             
where TP, TN, FP, and FN denote the number of true positives, true negatives, false positives, and false 
negatives, respectively. 

5. Experimental Results 

5.1 Datasets 
5.1.1 Dataset1  

    A dataset of Parkinson’s disease (PD) from the UCI Machine Learning Repository was created by Max 
Little [43].  It contains 195 rows, each corresponding to a voice measure from one of 31 individuals (23 with 
PD and 8 healthy). Each column represents a particular voice feature. Out of 195, 147 voice measures are 
from PD patients and the remaining are from healthy persons. The status column has two values, 0 for healthy 
individuals and 1 for PD patients. Table 2 details dataset features description. 

Table2. Dataset1 features description 

Feature Name No. 
Vocal fundamental frequency 3 
Fundamental frequency variation measures 5 
Amplitude variation measures 6 
Noise to tonal measures 2 
Recurrence and correlation measures 2 
Detrended fluctuation analysis 1 
Additional fundamental frequency variation measures 3 

 
5.1.2 Dataset2 

    A Parkinson’s dataset available at [44] comprised 756 voice measures collected from 252 individuals. 
Among them, 188 individuals had Parkinson’s. Vowel /a/ was repeated thrice by each participant for data 
collection. From each voice measure, 754 distinctive features were extracted. Table 3 details dataset features 
description. 
 

Table 3. Dataset2 features description 
 

Feature Name No. 
Basal Features 21 
Temporal Frequency Features 11 
MFCCs 84 
Vocal Cord Features 22 
TQWT 615 
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5.2 Data Exploration  

     Figs. 3 and 4 show a heatmap of the dataset1 features and dataset2 features, respectively. In the context 
of this study, heatmap effectively used to identify highly correlated features in a dataset, which can then be 
removed to avoid redundancy. Resulting in a reduced dataset that more efficient to analyze and less prone to 
overfitting. 

 

 

Fig. 3 Heatmap exploration of correlation between features in dataset1 
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Fig. 4 Heatmap exploration of correlation between features in dataset2 
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5.3 Feature Importance 
 

      PCMI method selected 10 features out of 23 from dataset1 and 55 features out of 754 from dataset2. Figs. 
5 and 6 illustrate the importance scores of features in dataset1 and dataset2, respectively. 

 
 

 

Fig. 5 Feature importance of dataset1 

 

Fig. 6 Feature importance of dataset2 
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     Figs. 7 and 8 illustrate histograms that analyze the distribution of important features in dataset1 and 
dataset2, respectively. A histogram visually represents data distribution, displaying frequencies within 
specified intervals. A balanced distribution ensures that the classifier is not biased towards the majority class.  

 

Fig. 7 Histogram exploration of features distribution in dataset1 
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Fig. 8 Histogram exploration of features distribution in dataset2 
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5.4 Results and Discussion 
     The experiments were conducted on a system running Windows 10, powered by an Intel Core i5 G7 CPU 
and 8GB of RAM, and coded using python. 
      In our experiments, the proposed approach is tested on dataset1 and dataset2 published in UCI repository. 
Table 4 shows the performance of each model without SMOTE and PCMI approach for dataset1 in the term 
of accuracy. Table 5 shows the performance of each model without SMOTE and PCMI approach for dataset2 
in the term of accuracy. Table 6 shows the outcomes achieved through the integration of SMOTE and PCMI 
approach, using the hold-out method 75-25% train-test partition for dataset1. Table 7 shows the outcomes 
achieved through the integration of SMOTE and PCMI approach, using the hold-out method 60-40% train-
test partition for dataset2. Tables 8 and 9 show the outcomes achieved through the integration of SMOTE 
and PCMI approach with 10-fold CV for dataset1 and dataset2, respectively. 
     Tables 4 and 5 illustrate the performance of the classifiers without SMOTE and PCMI approach. In 
Dataset1, CatBoost achieved the highest accuracy of 93.8%, followed by XGBoost with 91.8%, GBoost with 
89.8%, LightGBM with 86.3%, and AdaBoost with 84.7%. Conversely, Dataset2 witnessed LightGBM 
achieved the highest accuracy of 87.1% followed by XGBoost with 86.1%, CatBoost with 84.8%, GBoost 
with 84.2%, and AdaBoost with 83.8%. These results highlight the need for considering alternative 
techniques, such as SMOTE and PCMI, to enhance model generalization and robustness across diverse 
datasets. 
    Tables 6 and 7 illustrate the performance of the classifiers with SMOTE and PCMI approach, utilizing a 
hold-out method with 75:25 split for Dataset1 and 60:40 split for Dataset2, the results reveal that 
incorporating SMOTE and PCMI techniques can enhance the performance of classification models across 
both datasets. In Dataset1, CatBoost outperforms the other models with an accuracy of 97.3%, followed by 
XGBoost with 94.6%, GBoost with 93.2%, and LightGBM with 87.8%. AdaBoost has the lowest accuracy 
of 86.5%. The recall, precision, F-score, and AUC for CatBoost are also the highest, at 97.4%, 97.4%, 97.4%, 
and 0.998, respectively. This means that CatBoost with SMOTE and PCMI is the most accurate model for 
Dataset1. In Dataset2, LightGBM outperforms the other models with an accuracy of 95.6%, followed by 
CatBoost with 95.4%, XGBoost with 94.3%, and GBoost with 92.9%. AdaBoost has the lowest accuracy of 
87.5%. The recall, precision, F-score, and AUC for LightGBM are also the highest, at 94.2%, 97.3%, 95.7%, 
and 0.993, respectively. This means that LightGBM with SMOTE and PCMI is the most accurate model for 
Dataset2. Further evaluation using confusion matrices provides additional insights into the model 
performance. For dataset1, CatBoost correctly identified 37 PD cases (TP) and incorrectly labeled 1 HC case 
(FP). Additionally, it correctly classified 35 HC cases (TN) and misclassified 1 PD case (FN). For dataset2, 
LightGBM accurately identified 389 PD cases (TP) while incorrectly classifying 11 HC cases (FP). 
Moreover, it correctly categorized 376 HC instances (TN) and mislabeled 24 PD cases (FN). The results 
indicated that CatBoost and LightGBM had the best performance for dataset1 and dataset2, respectively. 
      Tables 8 and 9 illustrate the performance of the classifiers with SMOTE and PCMI approach, utilizing a 
10- fold CV for dataset1 and dataset2, respectively. In Dataset1, XGBoost demonstrated strong capabilities 
with an accuracy of 96.9%, recall at 95.2%, precision reaching 98.6%, F-score of 96.8%, and an AUC of 
0.9897. GBoost closely followed, exhibiting robust performance across various metrics. However, the 
standout performer in Dataset1 was CatBoost, achieving an impressive accuracy of 97.2%, with a recall of 
95.2%, precision of 99.3%, F-score of 97.1%, and an outstanding AUC of 0.9953. LightGBM and AdaBoost 
also yielded commendable results, contributing to the overall effectiveness of the hybrid approach. In 
Dataset2, XGBoost demonstrated exceptional performance with an accuracy of 97.2%, a recall at 95.6%, 
precision reaching 98.7%, F-score of 97.1%, and an AUC of 0.9963. Notably, LightGBM outshone other 
models with remarkable accuracy of 97.6%, along with a recall of 96.0%, precision of 99.2%, F-score of 
97.6%, and an outstanding AUC of 0.9978. These results position LightGBM as the top-performing model 
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for Dataset2. CatBoost also displayed commendable accuracy of 97.5%, a recall of 96.2%, precision of 
98.8%, F-score of 97.5%, and an AUC of 0.9967, establishing itself as a robust classifier. GBoost and 
AdaBoost, while slightly trailing behind, contributed significantly to the overall efficacy of the hybrid 
approach with their respective performance metrics. 

 
Table 4. Performance of each model without SMOTE and PCMI approach for dataset1 in the term of accuracy 

Dataset Model  Accuracy (%)  

 XGBoost 91.8 

 LightGBM 86.3 

Dataset1 CatBoost 93.8 

 GBoost 89.8 

 AdaBoost 84.7 

 
 

Table 5. Performance of each model without SMOTE and PCMI approach for dataset2 in the term of accuracy 

Dataset Model  Accuracy (%)  

 XGBoost 86.1 

 LightGBM 87.1 

Dataset2 CatBoost 84.8 

 GBoost 84.2 

 AdaBoost 83.8 

 
 

Table 6. Proposed hybrid approach results using hold-out method (75-25 % train–test partition) for dataset1 

Dataset Data Augmentation  FS Method  Model Accuracy (%) Recall (%) Precision (%) F-score (%) AUC 

   XGBoost 94.6 94.7 94.7 94.7 0.990 

   LightGBM 87.8 86.8 89.2 88.0 0.980 

Dataset1 SMOTE PCMI CatBoost 97.3 97.4 97.4 97.4 0.998 

   GBoost 93.2 94.7 92.3 93.5 0.992 

   AdaBoost 86.5 86.8 86.8 86.8 0.955 
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Table 7. Proposed hybrid approach results using hold-out method (60-40 % train–test partition) for dataset2 

Dataset Data Augmentation  FS Method  Model Accuracy (%) Recall (%) Precision (%) F-score (%) AUC 

   XGBoost 94.3 91.7 97.1 94.4 0.991 

   LightGBM 95.6 94.2 97.3 95.7 0.993 

Dataset2 SMOTE PCMI CatBoost 95.4 93.7 97.2 95.4 0.992 

   GBoost 92.9 89.4 96.6 92.8 0.984 

   AdaBoost 87.5 83.8 91.3 87.4 0.942 

 

 

Table 8. Proposed hybrid approach results using 10-fold Cross Validation for dataset1 

Dataset Data Augmentation  FS Method  Model Accuracy (%) Recall (%) Precision (%) F-score (%) AUC 

   XGBoost 96.9 95.2 98.6 96.8 0.9897 

   LightGBM 94.8 93.8 96.2 94.8 0.9891 

Dataset1 SMOTE PCMI CatBoost 97.2 95.2 99.3 97.1 0.9953 

   GBoost 95.5 93.8 97.4 95.4 0.9897 

   AdaBoost 91.0 89.0 93.1 90.6 0.9516 

 

 

Table 9. Proposed hybrid approach results using 10-fold Cross Validation for dataset2 

Dataset2 Data Augmentation  FS Method  Model Accuracy (%) Recall (%) Precision (%) F-score (%) AUC 

   XGBoost 97.2 95.6 98.7 97.1 0.9963 

   LightGBM 97.6 96.0 99.2 97.6 0.9978 

Dataset2 SMOTE PCMI CatBoost 97.5 96.2 98.8 97.5 0.9967 

   GBoost 94.4 92.4 96.3 94.3 0.9865 

   AdaBoost 87.6 86.7 88.5 87.5 0.9532 
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     The analysis results confirm that the proposed approach, employing a hybrid methodology with a strategic 
combination of SMOTE and PCMI, is highly effective in enhancing the efficacy of classification models for 
Parkinson’s detection. The initial experiments without employing the SMOTE and PCMI approach resulted 
in lower accuracy for the classification models in Parkinson’s detection. However, the subsequent integration 
of these techniques, along with a hold-out method, significantly improved models’ accuracy, recall, 
precision, F-score, and AUC metrics. In Dataset1, CatBoost emerged as the leading model with exceptional 
accuracy of 97.3% and well-balanced recall, precision, and F-score metrics. For Dataset2, LightGBM 
showcased outstanding accuracy of 95.6% and superior performance in recall, precision, F-score, and AUC. 
The comprehensive evaluation using confusion matrices provided deeper insights into the models’ abilities 
to accurately identify positive and negative cases. CatBoost and LightGBM consistently demonstrated 
superior performance in 10-fold CV, further substantiated the robustness of the hybrid approach. These 
findings underscore the effectiveness and adaptability of the proposed hybrid approach, positioning it as a 
reliable strategy for improving PD classification across diverse datasets and evaluation methodologies.  
      For comparison purpose, Tables 10 and 11 present the accuracies of previous PD diagnosis methods. Our 
PCMI-CatBoost and PCMI-LightGBM methods yield higher accuracy than all methods previously explored 
for dataset1 and dataset2, respectively. 
      For Dataset1, while [33] and [36] used fewer features, they often involved complex feature selection 
methods or algorithms with higher computational complexity. Moreover, [32] and [40] used more number 
of features compared to the proposed approach. For Dataset2, some studies such as [31] used a large number 
of features, which potentially increased computational burden, whereas studies like [29], [37], and [39] used 
fewer features but often involved more complex feature selection methods or algorithms. This study uses 
fewer features (10 for Dataset1, 55 for Dataset 2), reducing computational burden. In the proposed approach, 
computation time was decreased via less number of effective features, a lightweight feature extraction 
process and a classifier. The features were obtained from the speech signals and so to obtain these features 
is easier and less costly than the other methods in the literature. 

              Table10. Comparison of previous PD diagnosis methods with our method in term of accuracy for dataset1 

Ref. No. of features Method Accuracy (%) 

Senturk [32] 13 RFE-SVM 92.84 

Goyal et al. [33] 9 GA+RFE-SVM 88.71 

Lamba et al. [36] 5 GA-RF 95.58 

Al-Najjar et al. [40] 11 GWOWO-CR tree 95 

This study 10 PCMI-CatBoost 97.3 (hold-out) 

97.2 (avg. 10-fold CV) 
 

         Table 11. Comparison of previous PD diagnosis methods with our method in term of accuracy for dataset2 

Ref. No. of features Method Accuracy (%) 

Tuncer et al. [29] 50 MAMA tree +SVD+Relief-KNN 96.83 

Ashour et al. [31] 350 PCA-SVM 94 

Lamba et.al. [37] 40 MIRFE-XGBoost 93.88 

Chawla et al. [39] 40 ZOARFE-GPC 97.07 

This study 55 PCMI-LightGBM 95.6 (hold-out) 

97.6 (avg. 10-fold CV) 
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       PD diagnosis system proposed in this study differs from the literature in terms of FS method, a 
lightweight feature extraction process and a classifier. A high enough classification performance has been 
achieved. Using speech features in the diagnosis of PD helped very much. Obtaining speech features are both 
easier and cheaper. In this study, CatBoost and LightGBM with PCMI gave the best classification accuracy. 
These findings suggest that using certain subset of speech features help researchers classify PD patients more 
accurately and less efforts can be made to extract features from speech signals of candidate PD patients. 
Besides, the classification can be realized by less computational cost. 
      Despite the promising results, several limitations and areas for improvement should be addressed: First, 
the performance variability across datasets underscores the need for further validation on larger and more 
diverse datasets to enhance model generalizability. Second, while the proposed system effectively diagnoses 
Parkinson’s disease, it is unable to anticipate the severity of the illness. Lastly, due to the gradual progression 
of Parkinson’s, the system currently lacks the capability to identify disease progression. 

6. Conclusion  

     In this paper, the authors proposed a hybrid approach for Parkinson’s detection based on PC and MI. The 
approach combines PC and MI to identify the relevant features in the speech signal. The identified features 
are subsequently utilized for training five machine learning models, namely XGBoost, GBoost, CatBoost, 
AdaBoost, and LightGBM. Two datasets obtained from UCI repository were utilized for evaluation. To 
overcome the challenge of imbalanced classes in the datasets, synthetic minority oversampling technique 
(SMOTE) was implemented to achieve a more balanced representation. The proposed PCMI approach selects 
10 features from dataset1 and 55 features from dataset2. The results show that CatBoost with SMOTE and 
PCMI achieved an accuracy of 97.3% using hold-out method 75:25 and 97.2% using 10-fold CV method for 
dataset1, while LightGBM with SMOTE and PCMI approach achieved an accuracy of 95.6% using hold-out 
method 60:40 and 97.6% using 10-fold CV method for dataset2. Based on these results, CatBoost is 
suggested as the best classifier for Parkinson's detection due to its consistent  performance in terms of 
accuracy across different evaluation methods. These findings bring the potential for improving the lives of 
people with PD by enabling earlier diagnosis and treatment. Developing more accurate and reliable methods 
for diagnosing PD can help to ensure that people receive the care they need as early as possible. Future work 
could focus on applying the proposed method on different datasets, having a large number of features, to 
diagnose numerous other diseases. 
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للكشف عن مرض باركنسون باستخدام معامل   الكلام طریقة ھجینة تعتمد على 
 الارتباط بیرسون والمعلومات المتبادلة 

 
 محمد الخرادلي۱، خالد محمد  أمین ۲  ، أسامة أبو سعدة۳، مینا إبراھیم ٤  

 
 ۱قسم تكنولوجیا المعلومات –  كلیة الحاسبات والمعلومات – جامعة كفرالشیخ

 ۲قسم تكنولوجیا المعلومات –  كلیة الحاسبات والمعلومات – جامعة المنوفیة

 ۳قسم علوم الحاسب – كلیة الحاسبات والمعلومات – جامعة كفرالشیخ

 ٤قسم ذكاء الالة – كلیة الذكاء الاصطناعي – جامعة المنوفیة 
 

 الملخص: 
عصبي مزمن ومتقدم یؤثر على الحركة. أظھرت الدراسات أن    تنكسي  ھو اضطراب (PD) مرض باركنسون

قد تظھر في وقت مبكر من المرض، مما یشیر إلى إمكانیة استخدامھا كمؤشر تشخیصي مبكر.    كلامصعوبات ال
البیرسوني الارتباط  على  یعتمد  باركنسون  مرض  عن  للكشف  ھجینا  نھجاً  المقترحة  طریقتنا   (PC) تتناول 

، ویتم كلاملتحدید المیزات ذات الصلة في إشارات ال   MIو PC یجمع النھج بین (MI) . والمعلومات المتبادلة
وھي الآلي،  التعلم  من  نماذج  خمسة  لتدریب  المیزات  ھذه  ،  XGBoost،GBoost   ،CatBoost   استخدام 

AdaBoost  ،LightGBM  .ورنیاالتعلم الآلي بجامعة كالیف تم استخدام مجموعتین من البیانات من مستودع 
تقنیة التولید الزائد للأقلیة    طبیقللتقییم. وللتغلب على تحدي الفئات غیر المتوازنة في مجموعات البیانات، تم ت

میزات من المجموعة الأولى    ۱۰المقترح   PCMI لتحقیق تمثیل أكثر توازناً. یختار نھج   (SMOTE) التركیبیة
حقق دقة  PCMI ونھج SMOTE مع CatBoost میزة من المجموعة الثانیة. أظھرت النتائج أن نموذج  ٥٥و

  fold-10  ع% باستخدام طریقة التحقق المتقاط ۹۷.۲و  ۷٥:۲٥% باستخدام طریقة التحقق المتبقي  ۹۷.۳تبلغ  
البیانات الأولى، بینما حقق نموذج %  ۹٥.٦دقة تبلغ   PCMI ونھج SMOTE مع LightGBM لمجموعة 

المتبقي   التحقق  طریقة  المتقاطع  ۹۷.٦و  ٦۰:٤۰باستخدام  التحقق  طریقة  باستخدام   % 10-fold  لمجموعة
 .البیانات الثانیة

 )۲۰۲٥( )۱(العدد  )۱۲(المجلد 

 المجلة الدولیة للحاسبات والمعلومات 
 /https://ijci.journals.ekb.eg متاح على الإنترنت على الرابط : 
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