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Abstract 

The rapid and widespread transmission of COVID-19 has necessitated the development of efficient diagnostic tools. While 
RT-PCR remains the standard method for diagnosis, its limitations in terms of time and resource intensity highlight the need 
for alternative solutions. This study addresses this gap by proposing a three-stage hybrid methodology for the rapid 
identification of COVID-19 using CT scans. In the first stage, pre-trained convolutional neural networks (CNNs), including 
Vgg-16, ResNet50, and MobileNet-v2, are utilized to extract relevant features from COVID-19-affected lungs. The second 
stage enhances feature selection through the application of meta-heuristic techniques such as genetic algorithms (GA) and 
particle swarm optimization (PSO), optimizing the feature set for improved accuracy. Finally, the selected features are 
classified using four distinct classifiers, achieving remarkable classification accuracies of 99.57% and 98.42% on the 
COVIDx-2A CT and SARS-CoV-2 CT-Scan datasets, respectively. The novelty of this approach lies in the integration of 
multiple CNNs and meta-heuristic methods to enhance feature selection and classification performance. Our contributions 
include the development of a robust diagnostic tool that significantly improves the speed and accuracy of COVID-19 
detection, offering a viable alternative to traditional RT-PCR methods. 
Keywords: COVID-19, CT scan, Deep features, CNN, Meta-heuristic feature selection, Classification;  

1. Introduction  

The COVID-19 outbreak began in China in late 2019 and spread globally. The World Health Organization 
(WHO) gave the virus the formal name SARS-CoV-2 (Severe Acute Respiratory Syndrome-Coronavirus-2)[1]. 
The World Health Organization has called it a "pandemic" due to the virus's fast spread and the number of 
deaths. It is well understood that air and physical touch are the most important factors in viral transmission. 
According to reports, this virus targets explicitly the lungs and causes a severe form of pneumonia [2]. Around 
700 million individuals worldwide have been infected with COVID-19, resulting in approximately 7 million 
deaths as of July 20th, 2024. COVID-19 therapy and management rely heavily on early diagnosis. Real-time 
polymerase chain reaction (RT-PCR) and imaging tests, such as chest X-rays and computerized chest 
tomography (CT), are reliable techniques for the diagnosis of COVID-19[3]. According to research, some 
people may see changes in their X-ray and CT scans before they have any symptoms of COVID-19. 
Specifically, chest CT scans have shown typical radiographic features for COVID-19 patients and have 
provided quick and efficient findings[4, 5].  

However, there may not be enough physicians and radiologists to examine CT scans if the number of 
COVID-19 patients continues to rise at its current rate, straining public health systems to overload. Another 
potential solution to aid professionals in medical diagnosis within this specific context is the utilization of 
computer-aided diagnostic (CAD) systems. When a clinician is faced with a difficult diagnosis that the human 
eye cannot resolve, these technologies can step in and offer a second opinion by processing and analyzing 
images using computational approaches[6-8]. Currently, many individuals employ deep learning (DL) to 
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autonomously generate feature representations from the provided data. This is mostly because computers have 
gotten better over the past few years [6, 9]. 

Convolutional neural networks (CNNs) are highly proficient in analyzing CT scans and generating accurate 
predictions regarding a patient's COVID-19 status. While CNN architectures specialize in image classification, 
building a CAD system utilizing a CNN necessitates extensive datasets and substantial processing capacity to 
get satisfactory outcomes. CNN offers a variety of models, such as ResNet [10], AlexNet [11], VGG-Net [12], 
and GoogLeNet [13]. Classification accuracy in CNN models is proportional to the number of convolution 
layers that are expanded [14]. 

Due to the time necessary to search in a wide search field, selecting the finest or essential item becomes quite 
tough whenever there is an abundance of it. In the same way, there could be duplication of effort in a feature 
set used for categorization, therefore not all of the characteristics might be necessary. Given the sheer volume 
of potential feature combinations, selecting the optimal one from the initial set can be a time-consuming and 
resource-intensive process. The goal of feature selection (FS) is to improve the learning model's performance 
by extracting the most relevant characteristics from a pool of available information [15]. Among the many 
effective approaches to radiology application challenges, meta-heuristic algorithms stand out. The logical 
behavior of physical algorithms seen in nature is the inspiration for most of these algorithms. These optimization 
strategies usually find acceptable solutions with minimal computing work and in a fair amount of time [16]. 
Patients have a better chance of making a full recovery if coronavirus is caught early and contained. 
Consequently, many AI methods for early COVID-19 identification have been suggested in scientific literature. 

Using four cascaded steps, this study proposes a framework for COVID-19 categorization. Data loading and 
preprocessing, including scaling and cropping, was the initial stage. The second phase involved extracting the 
characteristics using three distinct convolutional neural network (CNN) models ResNet18, Vgg-16, and 
MobilNet-v2. Step three involves selecting features. Genetic Algorithm (GA) and Particle Swarm Optimization 
(PSO) techniques were employed for feature selection. Finally, four distinct classifiers—SVM, k-NN, MLP, 
and Ensemble learning—were used to determine the COVID-19 and other class detection performances. Two 
kinds of CT datasets are used in the experiments to test the proposed framework. 

In summary, the main contributions of the proposed framework are as follows: 
• Research that relied on deep features rather than conventional feature extraction techniques was 

conducted utilizing deep learning models. 
• In order to further improve the identification of COVID-19, the deep features that were collected 

from three separate CNN models have been integrated. 
• Three convolutional neural network (CNN) models, two metaheuristic feature selection algorithms, 

and four classifiers were the components of a hybrid study that was presented. 
• Among the metaheuristic approaches, PSO and GA were favored for detecting irrelevant and 

uninformative features due to their low computing burden and small parameter requirements. 
• Radiologists now have access to a very accurate decision-making system for the identification and 

follow-up of COVID-19. 
This paper is organized in the following way: After this introduction, Section 2 shows the work that was 

previously mentioned. In Section 3, the suggested framework is shown. In Section 4, The results of the 
experiment are discussed. Section 5 is the conclusion of this paper. 

2. Related Work 

Several current approaches to COVID-19 identification that utilize ML and DL models are outlined here. 
Models based on deep learning and machine learning make the identification of many chronic diseases quite 
straightforward. As an example, the COVID-Net model [17, 18] has been effective in training deep neural 
network models with open-source freely accessible CT image datasets (COVIDx-CT) and in optimizing micro 
and macro architecture through machine-driven design exploration to construct a problem-specific architecture 
that is both efficient and effective. Zhao et al. [19]   proposed a modified version of ResNet CNN A deep learning 
model for COVID-19 detection using CT images was developed Which focuses on the use of transfer learning, 
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and 4 models were produced that gave good results, specifically the BIT-M model which gave an accuracy of 
92.2%. 

Loddo et al. [20] proposed a novel approach to diagnosing COVID-19 that utilizes various CNN architectures 
to ensure precise identification of the virus. For the purpose of evaluating the proposed model, the COVIDx 
CT-2A and COVID-CT CT scan image datasets were incorporated during the formulation of the proposed 
method. The proposed method was assessed utilizing various evaluation metrics. Compared to other CNN 
architectures, the VGG19 achieved an accuracy of 98.87% on the COVIDx CT-2A dataset. 

Mishra et al.[21] proposed a various transfer learning (TL) algorithms for the detection of COVID-19 
patients. Additionally, they integrated outcomes from multiple deep convolutional neural network (CNN) 
algorithms through a decision fusion-based approach to generate a conclusive result. Their experimentation 
involved 744 CT scan images, comprising 347 COVID-19 cases and 397 non-COVID-19 cases, resulting in an 
average accuracy of 88.34%, an area under the curve (AUC) of 88.32%, and an F1 score of 86.7%. 

 Carvalho et al. [22] proposed an approach to identifying COVID-19 from CT images scan. After suggesting 
a convolutional neural network design for feature extraction from CT scans, they use a tree Parzen estimator to 
fine-tune the network's hyperparameters. After that, they use a genetic algorithm to apply certain features. 
Lastly, four classifiers with distinct techniques are used to achieve the classification. On the SARS-CoV-2 CT-
Scan dataset, the suggested approach obtained an accuracy of 0.997, while on the COVID-CT dataset, it was 
0.987. 

By combining deep feature extraction with feature selection, Basu et al. [15] created an end-to-end 
architecture. In order to extract the deep features from CT scan images, they utilized three distinct pre-trained 
Deep learning models ( DenseNet, ResNet, and XceptionNet).To improve performance, they used a 
combination of Adaptive β-Hill Climbing (AβHC), a local search method, and Harmony search, a meta-heuristic 
optimization strategy. The SARS-COV-2 CT scan dataset, which includes CT scan images, was used to evaluate 
the approach. This method outperformed all others on the given dataset, with an accuracy level of 98.87%. 

In order to determine which COVID-19 dataset features were most important, Dey et al. [23] used ResNet 
and GoogleNet as pre-trained models to deep features then develop a hybrid meta-heuristic feature selection 
technique they called the manta ray foraging based golden ratio optimizer ( MRFGRO ). In this model, three 
datasets were utilized: MOSMED, SARS-COV-2 CT scan, and COVID-CT. This approach was able to get a 
99.42% accuracy rate on the SARS-COV-2 CT scan dataset. 

El-Kenawy et al. [24] introduce a three-phase framework that utilizes two optimization methods to perform 
feature selection and classification of COVID-19. The first step is extracting features from CT scans using the 
AlexNet model. This is followed by the utilization of the Guided Whale Optimization Algorithm (Guided 
WOA), which is based on the Stochastic Fractal Search ( SFS ) method. Lastly, a voting classifier is employed, 
which is based on the Particle Swarm Optimization (PSO) technique. The model attains an Area Under the 
Curve (AUC) value of 0.995. 

Hassan E. et al. [25] assessed the effectiveness of various pre-trained transfer learning models, including 
ResNet-50, VGG-19, VGG-16, and Inception V3, for the classification of CT images. The study utilized the 
binary cross-entropy metric to distinguish COVID-19 cases from normal cases. To mitigate overfitting, they 
employed the Stochastic Gradient Descent and Adam optimization techniques. The pre-trained models 
demonstrated high accuracy, achieving 99.07%, 98.70%, 98.55%, and 96.23%, respectively. 

Singh et al [26] developed a feature selection approach for classifying COVID-19 and healthy individuals' 
chest CT images. From a dataset of 2,482 images, 213 features were extracted and reduced through a two-step 
process: a Chi-square test to select 75% of the features, followed by optimization using three nature-inspired 
algorithms. The reduced feature set was then classified using five machine learning models, with XGBoost 
yielding the best results. Their approach achieved 95.99% accuracy, a mean intersection over union of 0.9655, 
and an area under the curve of 0.9966, highlighting the importance of effective feature selection in medical 
image analysis. 

Hossain M. M. et al. [27] introduced a COVID-19 detection model using chest CT scans, where features 
from VGG-19 and ResNet-50 CNNs were fused and optimized through techniques like Recursive Feature 
Elimination, PCA, and LDA. The optimized features were classified using a Max Voting Ensemble, achieving 
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high performance metrics, including 98.51% accuracy and 99.49% sensitivity, following 5-fold cross-
validation. For more clarification Table 1 presents the pros and cons of the related work. 

In previous studies, the focus was on binary classification for detecting COVID-19 disease. However, in this 
study, our approach is expanded to include three classes: Normal, pneumonia, and COVID-19. With the 
proposed framework, the selection of datasets includes the 194922 CT image. In addition, the proposed 
framework examines the utilization of feature selection and optimization techniques like PSO and GA. 

Table 1: Comparison of related work 

Ref Year Pros Cons 

 [18] 2020 High accuracy, clinical relevance, and 
explainability 

Generalization to other data sources is 
unknown; limited explainability analysis. 

 [17] 2021 High accuracy of 98.1% in detecting 
COVID-19 

Complex architecture requiring significant 
computational resources. 

 [19] 2021 Effective use of transfer learning, improving 
model performance. 

Subtle visual differences in CT images 
reduce accuracy; limited generalizability. 

 [20] 2021 
Comparative study of CNN architectures and 
explores transfer learning for COVID-19 
diagnosis. 

Limited modifications to architectures; 
VGG19 misclassifies some cases. 

 [21] 2020 Combines predictions from multiple models, 
enhancing efficiency. 

Variability in CT image sizes may affect 
performance; risk of overfitting due to small 
dataset. 

 [22] 2021 Efficient hyperparameter optimization using 
the Tree Parzen Estimator. 

High accuracy on a limited dataset suggests 
potential overfitting; computational 
complexity. 

 [15] 2022 
Utilizes state-of-the-art CNN models 
(DenseNet, ResNet, Xception) for feature 
extraction. 

Risk of overfitting due to high-dimensional 
features without proper regularization. 

 [23] 2021 
Hybrid approach combining multiple meta-
heuristic algorithms, demonstrating high 
accuracy in COVID-19 screening. 

Requires further validation across different 
datasets; significant computational 
resources needed for scalability. 

 [24] 2020 Adaptable method that can be modified for 
different datasets. 

Lack of interpretability, especially for non-
experts; approach may not generalize well 
to different datasets without adjustments. 

 [25] 2024 
Evaluation of multiple pre-trained models 
with high accuracy, sensitivity, and 
specificity. 

Dataset may not cover all COVID-19 
variations; some models require significant 
computational resources. 

 [26] 2024 Innovative use of nature-inspired algorithms 
for feature selection. 

Performance heavily depends on parameter 
tuning, which is time-consuming and 
requires expertise; computational 
complexity. 

 [27] 2024 

Ensemble classification approach improves 
robustness and accuracy; integrates 
optimized deep features for better COVID-19 
detection. 

Computationally intensive processes 
generalization of results may be limited to 
the specific dataset used. 

 
 



28     Abdelghany Fathy, Hatem Abdelkader , Amira Abdelatey 

 
3. Proposed Work 

The proposed framework for the COVID-19 detection procedure is illustrated in Fig.  1. The CT scan images 
are preprocessed before being sent into a convolutional neural network (CNN) model for feature extraction. 
Essentially, the features refer to the output of the preceding layer that contains the prediction probabilities. 
Following feature extraction, PSO and genetic algorithms are used to choose the most relevant features. After 
that, the classifiers are trained using the selected features to get the final predictions. The following sections 
provide an in-depth analysis of the aforementioned pipeline's main stages. 

3.1. Datasets 

The datasets included in this work are COVIDx CT-2A and SARS-COV-2 CT-Scan, both of which are 
publicly available. Below is our comprehensive portrayal of them. 

 
3.1.1 COVIDx-2A CT scan 

COVIDx-2A CT [28] images dataset is a valuable open-access resource for researchers and 
healthcare professionals studying COVID-19. It extends the original COVIDx dataset, focusing 
specifically on CT (computed tomography) imaging. The dataset comprises a substantial collection 
of CT images meticulously selected and verified to ensure high-quality and clinically significant 
data. 

At the time of writing, the COVIDx-2A CT images dataset contains a vast array of 194,922 CT 
images obtained from 3,745 patients across 15 different countries. The patients' ages range from 0 
to 93 years, with a median age of 51. Expert pathologists have strongly clinically validated the 
findings associated with each image, thus providing reliable and accurate diagnoses. 

The dataset is organized into distinct classes, enabling researchers to categorize and analyze the 
images effectively. These classes include COVID-19, representing CT images of patients confirmed 

Fig.  1: Proposed Framework 
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positive for COVID-19; pneumonia, showing CT scans of people with pneumonia who have 
nothing to do with COVID-19; and normal, signifying CT images of patients with no abnormalities 
or underlying conditions. One sample per class is shown in  Fig.  2   .  

3.1.2 SARS-CoV-2 CT-Scan Dataset 
The SARS-CoV-2 CT-Scan Dataset [29] is a valuable resource that contains 2,482 images of CT 

scans. This dataset was collected from hospitals in Sao Paulo, Brazil, and included scans of 120 
patients of both genders. The dataset comprises 1,252 CT scans of patients infected with SARS-
CoV-2 and 1,230 CT scans of patients with other lung diseases.  

The availability of this dataset provides researchers, medical professionals, and data scientists 
with a comprehensive collection of CT scan images related to SARS-CoV-2 and other lung diseases. 
These images can be utilized for various purposes including diagnostic research, disease 
progression analysis, and the development of machine learning algorithms for accurate detection 
and classification. The image's sizes range from 119 × 104 to 416 × 512.  Fig.  3 shows some sample 
images from the dataset. 

(A) (B) (C) 

(A)  

(B)  

Fig.  2 : Example chest CT images from the COVIDx-CT dataset, illustrating (A) COVID-19 pneumonia cases, (B) non-COVID-19 
pneumonia cases, and (C) normal control cases. 

Fig.  3 : Some sample CT images from the SARS-COV-2 CT-Scan Dataset, illustrating (A) Scans from COVID-19 positive patients and 
(B) Scans from COVID-19 negative patients 
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3.2. Preprocessing 

The preprocessing stage in detecting COVID-19 from CT scan images is crucial to the success and accuracy 
of the subsequent analysis. Reducing or removing data variability's effect on model performance, enhancing 
picture contrast, and making the disease zone more noticeable relative to the original image are all part of the 
process. Each image of the two datasets underwent a cropping technique to highlight the illness region in the 
lung. Subsequently, the CT images were resized to 224 × 224 pixels to be used as input for the CNN models. 

3.3. Feature Extraction 

A CNN-based model is employed for feature extraction. Hybrid techniques are produced by combining the 
retrieved characteristics with classical classifiers. Typically, CNN networks are composed of three layers: a 
convolution layer, a pooling layer, and a fully connected layer. The convolution layer is a crucial component of 
the model, serving as its foundational layer. The incoming patterns are processed through filters, resulting in 
the formation of feature maps. By moving these filters together with the pattern, a wide range of characteristics 
can be identified. The more convolution layers you have, the more in-depth attributes can be acquired. 
Typically, a flattening or global pooling layer is used after the last convolutional layer to create a one-
dimensional tensor. Subsequently, there are one or more substantial layers. The last dense layer generates a one-
dimensional tensor with a size equivalent to the number of output classes and often uses a softmax activation 
function. The function encodes a probability distribution that represents the likelihood of the picture belonging 
to each of the classes. Furthermore, it is utilized in various layers such as normalization and dropout layers[30]. 

Our primary emphasis has been on extracting profound characteristics utilizing pre-trained Convolutional 
Neural Network (CNN) models. For the purpose of extracting deep features, Three commonly used pre-trained 
Convolutional Neural Networks (CNNs) have been selected: VGG16 [12], ResNet50[31], and MobileNet-v2 
[32]. In this study, both the training and testing images are run through the model, and features are extracted 
from the final layer. Table 2 illustrates the number of extracted deep features using various CNNs. 

Furthermore,  to assess the amalgamated deep features derived from various CNNs collectively, 
Combinations of different CNNs were examined by merging their feature sets. This fusion process entails 
concatenating the features extracted from the aforementioned CNNs to construct the ultimate feature vector, 
which is then evaluated using our proposed algorithm for feature selection (FS). 

Table 2 : Number of deep features extracted using various CNN models when applied in datasets. 

 
 
 
 
 
 
 

3.4.  Feature selection 

Features from multiple CNNs have been combined, resulting in a significantly expanded feature set. This 
large feature vector raises concerns about potential overfitting of classifiers and the presence of redundant 
features. Feature selection aims to identify the optimal subset of features by removing irrelevant data from these 
extensive datasets. While it doesn't guarantee improved estimation rates, achieving comparable performance 
with fewer features is considered a favorable outcome. In this study, the use of some meta-heuristic FS 
algorithms, such as PSO and GA, is proposed. 

Pre-trained CNN model Number of features Extracted 

VGG16 512 

ResNet50 2048 

MobileNet-v2 1280 
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3.4.1. Particle swarm optimization (PSO) 
The Particle Swarm Optimization (PSO) algorithm draws inspiration from the coordinated movements 

observed in animal herds striving to fulfill their basic needs, enabling them to efficiently achieve their 
objectives. PSO [33] operates by managing a group of individuals, referred to as "particles," each possessing 
velocity and position information, collectively forming a "swarm". Through the mathematical evaluation of 
fitness functions, the optimization of particles is guided. The state of a particle that is closest to the solution is 
referred to as "Pbest" (personal best), whereas the state of the particle that is closest to the solution within the 
whole swarm is called "Gbest" (global best). Modifying these variables determines the rate of variation and 
displacements of each particle [34]. 

Each particle in the population has two properties: position vector Xi = ( Xi1 , Xi2 , ……. , Xid ) and velocity 
vector Vi = ( Vi1 , Vi2 , ……. , Vid ) , where d denotes the dimension. and to update the position and velocity of 
each particle is calculated by the following equations. 

 
𝑋𝑋𝑖𝑖(𝑡𝑡 + 1) = 𝑋𝑋𝑖𝑖(𝑡𝑡) + 𝑉𝑉𝑖𝑖(𝑡𝑡 + 1)     (1) 

 
𝑉𝑉𝑖𝑖(𝑡𝑡 + 1) = 𝑤𝑤 × 𝑉𝑉𝑖𝑖(𝑡𝑡) + 𝑐𝑐1 × 𝑟𝑟1 × (𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑖𝑖 − 𝑥𝑥𝑖𝑖(𝑡𝑡)) + 𝑐𝑐2 × 𝑟𝑟2 × (𝑔𝑔𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡 − 𝑥𝑥𝑖𝑖(𝑡𝑡))  (2) 

 
The variables 𝑉𝑉𝑖𝑖 and 𝑋𝑋𝑖𝑖 denote the velocity and position vectors of the ith (i = 1, 2, ..., N) particle. The top 

limit for each dimension is set to 1, while the lower limit is set to 0. The inertia parameter, denoted as w, is a 
non-negative value. In terms of acceleration, we have 𝑐𝑐1and 𝑐𝑐2 . 𝑐𝑐1  is the user-specified personal learning 
parameter, while 𝑐𝑐2 is the global learning parameter that controls the particle search scope. 𝑟𝑟1 and 𝑟𝑟2 are two 
random integers that fall into the interval [0, 1]. 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡  is best position, 𝑔𝑔𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡 is global best. 

3.4.2. Genetic Algorithm (GA) 
Genetic algorithms (GAs) [35] have emerged as a powerful tool for feature selection in various machine 

learning applications. In the realm of feature selection, GAs leverage principles inspired by natural evolution to 
efficiently explore and optimize feature subsets. This involves encoding potential feature subsets into binary 
strings, where each bit represents the presence or absence of a feature. The evaluation of these subsets is 
facilitated by a fitness function, typically based on performance metrics like classification accuracy or model 
complexity. Mathematically, the fitness function f(x) quantifies the suitability of a feature subset x, often defined 
as f(x)=evaluation metric(x), and then applying genetic operations like as crossover and mutation to generate 
offsprings that make up the next generation of solutions. This iterative technique tries to steadily enhance the 
quality of the feature subsets over time, finally converging to an ideal solution. The implementation of Genetic 
Algorithm based feature selection is shown in Fig.  4. 

3.5. Classification Algorithm 

Support Vector Machine (SVM) [36], K-Nearest Neighbor (KNN), and MultiLayer Perceptron (MLP) [37] 
were the three classification algorithms utilized in the proposed framework. The algorithms were then subjected 
to ensemble voting. The algorithms were selected for their track records of success in previous studies, and the 
ensemble voting learning method was selected for its ability to harness the power of each classifier individually. 
In a situation where there are n classifiers (classifier 1, classifier 2, ..., and classifier n ), the outcome is not 
dependent on any one classifier. Instead, the results from each classifier are fed into a fuser, which oversees the 
ultimate decision-making process. 

With each pre-trained model and concatenated between them, these classifier algorithms were run three 
times: once without feature selection, once with PSO selecting features, and once with GA selecting features. 
Different algorithms include different sets of hyperparameters. Every algorithm is tested on all three sets of 
features—the original features, the features selected by PSO, and the features selected by GA—using identical 
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parameters and constraints. To achieve the best possible results, the model was fine-tuned using 
hyperparameters. Table 3 shows the updated hyperparameters for each classifier. 

Table 3 :  The updated hyperparameters for each classifier. 

 
 
 
 
 
 
 
 
 
 
 
 

Classifier Parameters 

SVM kernel= poly, C=1.0 

KNN n_neighbors = 5,weights =distance 

MLP activation= relu , solver = adam, 
learning_rate=constant, alpha=0.001 

Fig.  4 : The flowchart of genetic algorithms (GA) based feature selection. 
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3.6. Evaluation Metrics 

All four of these statistical measures—accuracy (A), recall (R), precision (P), and F-score—are widely 
utilized in the literature to assess the outcomes (F1). All these criteria have been considered to assess the 
suggested model in a broader sense. The metrics are defined using the following equations, which are based on 
the values of TP (true positive), TN (true negative), FP (false positive), and FN (false negative) [38]. 

 
• Accuracy (A) is a metric that evaluates a model's probability to identify correctly categorized data. 

It computes several accurately categorized negative and positive samples as in Equation (3). 

𝐴𝐴𝑐𝑐𝑐𝑐𝐴𝐴𝑟𝑟𝐴𝐴𝑐𝑐𝐴𝐴 =
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 + 𝐹𝐹𝑇𝑇
 (3) 

• Recall ( R )  is calculated by dividing the number of cases accurately classified into the positive class 
by the total count of positive class items. In other terms, it indicates the number of positive cases 
that were accurately classified as in Equation (4). 
 

𝑅𝑅𝑝𝑝𝑐𝑐𝐴𝐴𝑅𝑅𝑅𝑅 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇
 (4) 

• Precision (P) is a quantitative measure utilized to evaluate the accuracy with which a model predicts 
positive data samples. The proportion of positive samples that were predicted precisely is calculated 
using Equation (5). 

Precision  =  
TP

TP  +  FP
 (5) 

• F1-score (F1) is measuring the harmonic mean of Precision and Recall and is calculated using 
Equation (6). 

𝐹𝐹1 − 𝑝𝑝𝑐𝑐𝑠𝑠𝑟𝑟𝑝𝑝 = 2 ×
𝑇𝑇𝑟𝑟𝑝𝑝𝑐𝑐𝑃𝑃𝑝𝑝𝑃𝑃𝑠𝑠𝑃𝑃 × 𝑅𝑅𝑝𝑝𝑐𝑐𝐴𝐴𝑅𝑅𝑅𝑅
𝑇𝑇𝑟𝑟𝑝𝑝𝑐𝑐𝑃𝑃𝑝𝑝𝑃𝑃𝑠𝑠𝑃𝑃 + 𝑅𝑅𝑝𝑝𝑐𝑐𝐴𝐴𝑅𝑅𝑅𝑅

 (6) 

4. Experimental Results and Discussion 

The experimental results offer useful information about the performance and efficacy of the suggested 
framework. This part outlines the technique used to evaluate our proposed strategy, as described in section 4.1. 
The findings of our suggested approach are presented in section 4.2. Additionally, a comparison study with 
current research on the same dataset is reviewed in section 4.3. 

4.1. Experimental Setup 

Four different pre-trained deep convolutional neural network models - VGG-16, ResNet-50, and MobileNet-
v2 - are used as feature extractors in the experimental setup. These models were pre-trained on the ImageNet 
dataset. Four distinct machine learning classifiers - SVM, KNN, MLP, and Ensemble - are utilized. The 
incoming photos are preprocessed, followed by the extraction of deep features. The features are combined, 
followed by a genetic and PSO selection procedure. The studies were carried out on a personal computer with 
a GPU 16 GB NVIDIA GeForce GTX 1070, utilizing Jupyter IDE python 3 and TensorFlow 2.10 deep learning 
framework. 
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4.2. Results 

The experiments were carried out using two separate datasets. The first dataset, COVIDx-2A CT, was 
employed to classify CT images into three categories: COVID-19, pneumonia, and normal. The second dataset, 
SARS-CoV-2 CT-Scan, was used to differentiate between normal and COVID-19 CT scans. 

Once the CT images are pre-processed, the next step involves extracting features using pre-trained CNN 
models, including VGG-16, ResNet-50, and MobileNet-v2. The extracted features are then concatenated to 
enhance the feature vector representation, all possible concatenations between the extracted features from each 
two pre-trained CNN models are performed and finally, the concatenation is performed using the three CNN 
model’s features, after that, the concatenated features subjected to a rigorous selection process, where two robust 
feature selection algorithms, PSO and GA, are employed to identify the most relevant and critical features from 
the original feature set. These selected concatenated features are subsequently fed into different machine-
learning classifiers to execute the classification process. 

Several experiments were conducted, with the first focusing on using the original concatenated feature set 
as input to various machine learning classifiers without any prior feature selection. The purpose of this 
experiment was to obtain an initial assessment of the performance of the features extracted by the CNN models.  
The findings from the first experiment across both datasets are presented in Table 4. As detailed in Table 4, the 
MLP classifier demonstrates superior performance on the COVIDx-2A CT dataset, attaining an accuracy of 
0.9839 through the concatenation of features from ResNet-50 and MobileNet-v2 models. Also, on the SARS-
CoV-2 CT-Scan dataset, the KNN classifier achieves the highest accuracy of 0.9732 by employing concatenated 
features from VGG-16 and MobileNet-v2. 

Building on the results of the first experiment, it is recommended to implement feature selection on the 
concatenated features. This approach aims to identify the most significant features within the extracted set, 
which could substantially enhance the performance outcomes. 

In the second experiment, two powerful selection algorithms are utilized, PSO and GA, to identify the most 
critical feature sets from the individual CNN models as well as from the combined features (VGG-16 + ResNet-
50, VGG-16 + MobileNet-v2, ResNet-50 + MobileNet-v2, and VGG-16 + ResNet-50 + MobileNet-v2). Table 
5 details the number of extracted and concatenated features before and after the selection process. The results 
indicate that both PSO and GA effectively reduced the original feature sets by a significant percentage, thereby 
decreasing the required computation time and overall complexity of the proposed framework. 

Subsequently, the selected features were utilized as inputs for various machine learning classifiers, including 
SVM, KNN, MLP, and Ensemble, to assess their performance. Table 6 and Table 7 present the results of this 
experiment using PSO and GA, respectively. According to Table 6, the Ensemble classifier outperformed the 
others, achieving an accuracy of 0.9957 with PSO-selected concatenated features from the ResNet-50 + 
MobileNet-v2 models on the COVIDx-2A CT dataset. Additionally, the Ensemble classifier achieved the 
highest accuracy of 0.9758 using PSO-selected concatenated features from all three CNN models on the SARS-
CoV-2 CT-Scan dataset. 

As shown in Table 7, when GA is employed as the feature selection algorithm, the ensemble classifier 
demonstrates the highest performance, achieving an accuracy of 0.9951 using GA-selected concatenated 
features from the ResNet-50 + MobileNet-v2 models. Furthermore, it outperforms the other classifiers with an 
accuracy of 0.9842 when utilizing GA-selected concatenated features from all three CNN models. 

Our results indicate a significant performance improvement, particularly after applying the PSO and GA 
selection algorithms. Notably, the highest accuracy of 0.9957% was achieved on the COVIDx-2A CT dataset 
using the ensemble classifier with PSO-selected features from the ResNet-50 + MobileNet-v2 models. 
Moreover, the highest accuracy was obtained by using the concatenated features from only two models, rather 
than all three. This framework not only reduces the required time and resources but also simplifies the process 
by working with a smaller set of features. 

For a more detailed analysis, Table 8 provides a comprehensive overview of the average time required for 
each process in the proposed approach. It can be observed from Table 8 that the SARS-CoV-2 CT-Scan Dataset 
requires less processing time compared to the COVIDx-2A CT dataset, particularly in feature extraction and 
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selection, due to its smaller size. Moreover, variations in processing time may also be influenced by the 
complexity of the model structure. Models with more complex architectures tend to demand more time for each 
process. This detailed time analysis underscores the importance of considering both the dataset size and the 
complexity of the model architecture when evaluating the proposed approach's efficiency. 

Table 4: Results of the proposed framework without feature selection. 

 
 

                                                           Classifiers with original features set 

Features Set Classifiers 
COVIDx-2A CT dataset SARS-CoV-2 CT-Scan Dataset 

A P R F1 A P R F1 

 
VGG-16 

SVM 0.9251 0.9258 0.9166 0.9209 0.9356 0.9223 0.9519 0.9368 

KNN 0.9533 0.9577 0.9427 0.9484 0.9624 0.9553 0.9706 0.9629 

MLP 0.9465 0.9401 0.9464 0.9431 0.8926 0.8808 0.9091 0.8947 

Ensemble 0.9559 0.9541 0.9520 0.9528 0.9517 0.9447 0.9599 0.9523 

ResNet-50 

SVM 0.9326 0.9331 0.9251 0.9289 0.9463 0.9489 0.9439 0.9464 

KNN 0.9545 0.9569 0.9457 0.9496 0.9477 0.9491 0.9465 0.9478 

MLP 0.9844 0.9839 0.9828 0.9833 0.9423 0.9584 0.9251 0.9415 

Ensemble 0.9689 0.9697 0.9635 0.9662 0.9503 0.9566 0.9439 0.9502 

MobileNet-v2 

SVM 0.9161 0.9156 0.9087 0.9118 0.9181 0.9173 0.9198 0.9186 

KNN 0.9489 0.9512 0.9400 0.9441 0.9490 0.9492 0.9492 0.9492 

MLP 0.9718 0.9744 0.9663 0.9702 0.8872 0.8737 0.9064 0.8898 

Ensemble 0.9577 0.9578 0.9523 0.9544 0.9315 0.9307 0.9332 0.9319 

VGG-16 + ResNet-50 

SVM 0.9283 0.9295 0.9202 0.9246 0.9450 0.9393 0.9519 0.9456 

KNN 0.9563 0.9599 0.9471 0.9519 0.9651 0.9579 0.9733 0.9655 

MLP 0.9695 0.9720 0.9620 0.9663 0.9329 0.9286 0.9385 0.9335 

Ensemble 0.9632 0.9675 0.9563 0.9615 0.9597 0.9550 0.9652 0.9601 

VGG-16 + MobileNet-v2 

SVM 0.9215 0.9234 0.9116 0.9171 0.9356 0.9382 0.9332 0.9357 

KNN 0.9544 0.9587 0.9442 0.9497 0.9732 0.9634 0.9840 0.9735 

MLP 0.9728 0.9713 0.9705 0.9708 0.9329 0.9263 0.9412 0.9337 

Ensemble 0.9534 0.9605 0.9381 0.9474 0.9597 0.9550 0.9652 0.9601 

ResNet-50 + MobileNet-v2 

SVM 0.9368 0.9368 0.9307 0.9336 0.9544 0.9620 0.9465 0.9542 

KNN 0.9576 0.9596 0.9502 0.9534 0.9530 0.9520 0.9545 0.9533 

MLP 0.9839 0.9814 0.9840 0.9827 0.9423 0.9534 0.9305 0.9418 

Ensemble 0.9735 0.9737 0.9692 0.9710 0.9570 0.9647 0.9492 0.9569 

Combined 

SVM 0.9290 0.9303 0.9212 0.9255 0.9477 0.9443 0.9519 0.9481 

KNN 0.9566 0.9601 0.9477 0.9524 0.9664 0.9604 0.9733 0.9668 

MLP 0.9551 0.9483 0.9604 0.9539 0.9490 0.9468 0.9519 0.9493 

Ensemble 0.9720 0.9734 0.9665 0.9695 0.9624 0.9727 0.9519 0.9622 
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Table 5 : Number of features selected by PSO and GA 

 

4.1. Comparative Analysis 

This section evaluates the accuracy of our suggested framework in comparison to recent and existing studies 
in literature. Our proposed framework has compared with prior research conducted by Gunraj et al [17] [18], 
Zhao et al [19], and Loddo et al [20] on the COVIDx CT-2A dataset, and by Carvalho et al [22], Basu et al [15], 
and Dey et al [23] on the SARS-COV-2 CT-Scan dataset. Table 8 summarizes the results, indicating that the 
suggested framework achieves higher accuracy in classifying COVID-19 detection compared to prior studies. 
The suggested framework attained the greatest accuracy of 99.57% in the COVIDx CT-2A dataset, exceeding 
the values reported in prior studies on the same dataset. The suggested framework failed to achieve the highest 
accuracy in the SARS-COV-2 CT-Scan dataset, reaching 98.12%. 

5. Conclusions  

The COVID-19 pandemic has caused unprecedented global losses and challenges, further exacerbated by 
the emergence of new variants, raising significant concerns. In response, this paper introduces a robust 
framework for detecting COVID-19 in CT scans, leveraging two publicly available image datasets, one of which 
distinguishes between pneumonia cases and COVID-19 patients. The proposed framework utilizes 
convolutional neural network (CNN) architectures—specifically VGG-16, ResNet-50, and MobileNet-v2—to 
extract relevant features. Following this, an effective feature selection (FS) stage, employing Particle Swarm 
Optimization (PSO) and Genetic Algorithm (GA), refines the feature vectors by filtering out irrelevant data. 
Subsequently, four different classification algorithms are applied. 

The results demonstrate that our approach achieves impressive accuracy rates of 99.57% and 98.42% on the 
COVIDx-2A CT dataset and the SARS-CoV-2 CT-Scan dataset, respectively. The use of advanced feature 
selection techniques not only enhanced the accuracy of COVID-19 detection but also enabled clear 
differentiation from pneumonia. Moreover, our framework effectively mitigates the overfitting issues 
commonly associated with small datasets, performing competitively against pre-trained architectures and other 
state-of-the-art methods. Consequently, this framework has the potential to provide valuable second opinions 
in COVID-19 diagnosis and could be seamlessly integrated into computer-aided diagnostic systems. 

Features Set Original 
Features 

COVIDx-2A CT dataset SARS-CoV-2 CT-Scan Dataset 

PSO (%) GA (%) PSO (%) GA (%) 

VGG-16 512 249 (49%) 214 (42%) 265 (52%) 188 (37%) 

ResNet-50 2048 1032 (50%) 907 (44%) 1019 (50%) 869 (42%) 

MobileNet-v2 1280 640 (50%) 560 (44%) 624 (49%) 561 (44%) 

VGG-16 + ResNet-50 2560 1263 (49%) 1128 (44%) 1216 (48%) 1142 (45%) 

VGG-16 + MobileNet-v2 1792 903 (50%) 751 (42%) 876 (49%) 754 (42%) 

ResNet-50 + MobileNet-v2 3328 1665 (50%) 1512 (45%) 1643 (49%) 1520 (46%) 

Combined 3840 1927 (50%) 1774 (46%) 1886 (49%) 1694 (44%) 
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The limitation of the proposed framework lies in its potential difficulty in accurately identifying COVID-
19-positive CT scans during the early stages of infection. Consequently, the convolutional neural networks 
(CNNs) employed may struggle to extract the most relevant features at these critical junctures.  

Future research will focus on addressing this challenge by enhancing the feature extraction process. This can 
be achieved by integrating optimization techniques to boost performance and applying meta-heuristic methods 
to fine-tune CNN parameters. Additionally, employing a combined feature selection approach will help in 
identifying the most effective features for classification. Exploring advanced techniques such as ensembling, 
pruning, and attention mechanisms will further strengthen the robustness of the feature extractors. 

 

Table 6 : Results of the proposed framework with PSO feature selection. 

                                                                Classifiers with PSO feature selection 

Features Set Classifiers 
COVIDx-2A CT dataset SARS-CoV-2 CT-Scan Dataset 

A P R F1 A P R F1 

VGG-16 

SVM 0.9848 0.984 0.9841 0.984 0.9436 0.9826 0.9037 0.9415 

KNN 0.9919 0.9918 0.9908 0.9912 0.9436 0.9278 0.9626 0.9449 

MLP 0.9806 0.9785 0.9801 0.9793 0.9275 0.9124 0.9465 0.9291 

Ensemble 0.9903 0.9899 0.9895 0.9897 0.957 0.9647 0.9492 0.9569 

ResNet-50 

SVM 0.9932 0.993 0.9932 0.9931 0.8899 0.9899 0.7888 0.878 

KNN 0.9928 0.9924 0.9923 0.9923 0.9409 0.9388 0.9439 0.9413 

MLP 0.9881 0.9862 0.9887 0.9874 0.9436 0.9462 0.9412 0.9437 

Ensemble 0.9947 0.9943 0.9949 0.9946 0.9584 0.9831 0.9332 0.9575 

MobileNet-v2 

SVM 0.9879 0.9876 0.9871 0.9874 0.8832 0.9767 0.7861 0.8711 

KNN 0.9891 0.9888 0.9884 0.9885 0.9342 0.938 0.9305 0.9342 

MLP 0.9792 0.9777 0.9781 0.9779 0.9047 0.9151 0.893 0.9039 

Ensemble 0.9896 0.9892 0.9891 0.9891 0.9329 0.9765 0.8877 0.93 

VGG-16 + ResNet-50 

SVM 0.9887 0.9884 0.9884 0.9884 0.9235 0.9938 0.8529 0.918 

KNN 0.9933 0.993 0.9928 0.9929 0.9544 0.9474 0.9626 0.9549 

MLP 0.9906 0.9906 0.99 0.9903 0.9477 0.9539 0.9412 0.9475 

Ensemble 0.994 0.9933 0.9945 0.9939 0.9651 0.9807 0.9492 0.9647 

VGG-16 + MobileNet-v2 

SVM 0.9827 0.9826 0.9814 0.982 0.9248 0.9789 0.869 0.9207 

KNN 0.9932 0.9931 0.9926 0.9928 0.9584 0.9598 0.9572 0.9585 

MLP 0.9826 0.9811 0.9817 0.9814 0.949 0.9541 0.9439 0.9489 

Ensemble 0.9917 0.992 0.9902 0.9911 0.9624 0.9753 0.9492 0.9621 

ResNet-50 + MobileNet-v2 

SVM 0.9947 0.9945 0.9948 0.9946 0.906 0.9872 0.8235 0.898 

KNN 0.9939 0.9936 0.9935 0.9935 0.9503 0.9469 0.9545 0.9507 

MLP 0.9922 0.9914 0.9922 0.9918 0.945 0.9537 0.9358 0.9447 

Ensemble 0.9957 0.9955 0.9957 0.9956 0.9624 0.9832 0.9412 0.9617 

Combined 

SVM 0.9898 0.9895 0.9895 0.9895 0.9745 0.9863 0.9626 0.9743 

KNN 0.9936 0.9933 0.9931 0.9931 0.9705 0.9731 0.9679 0.9705 

MLP 0.989 0.9892 0.9876 0.9884 0.9732 0.9758 0.9706 0.9732 

Ensemble 0.9945 0.994 0.9945 0.9942 0.9758 0.9837 0.9679 0.9757 
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Table 7 : Results of the proposed framework with GA feature selection 

 

                                                 Classifiers with GA feature selection 

Features Set Classifiers 
COVIDx-2A CT dataset SARS-CoV-2 CT-Scan Dataset 

A P R F1 A P R F1 

VGG-16 

SVM 0.9847 0.9842 0.9838 0.984 0.9423 0.9715 0.9118 0.9407 

KNN 0.9922 0.9921 0.9912 0.9916 0.9369 0.9269 0.9492 0.9379 

MLP 0.9777 0.9751 0.9771 0.9761 0.9101 0.8828 0.9465 0.9135 

Ensemble 0.9898 0.9893 0.9892 0.9892 0.953 0.9593 0.9465 0.9529 

ResNet-50 

SVM 0.9938 0.9937 0.9937 0.9937 0.9248 0.9877 0.861 0.92 

KNN 0.9932 0.9928 0.9926 0.9927 0.9383 0.9409 0.9358 0.9383 

MLP 0.9894 0.9887 0.9888 0.9887 0.9342 0.9357 0.9332 0.9344 

Ensemble 0.9941 0.995 0.995 0.995 0.9503 0.9746 0.9251 0.9492 

MobileNet-
v2 

SVM 0.9876 0.9873 0.9866 0.9869 0.9007 0.963 0.8342 0.894 

KNN 0.9887 0.9884 0.9883 0.9883 0.9503 0.9469 0.9545 0.9507 

MLP 0.9769 0.9748 0.9757 0.9753 0.906 0.9064 0.9064 0.9064 

Ensemble 0.9898 0.9892 0.9895 0.9893 0.9342 0.9577 0.9091 0.9328 

VGG-16 + 
ResNet-50 

SVM 0.9897 0.9896 0.9894 0.9895 0.9248 0.9877 0.861 0.92 

KNN 0.9941 0.9938 0.9935 0.9936 0.9624 0.9651 0.9599 0.9625 

MLP 0.9903 0.9889 0.9905 0.9897 0.953 0.952 0.9545 0.9533 

Ensemble 0.9941 0.9938 0.994 0.9939 0.9597 0.9804 0.9385 0.959 

VGG-16 + 
MobileNet-

v2 

SVM 0.9856 0.9853 0.9848 0.985 0.9436 0.9882 0.8984 0.9412 

KNN 0.9935 0.9933 0.9928 0.993 0.9705 0.9681 0.9733 0.9707 

MLP 0.9875 0.9862 0.9875 0.9869 0.9477 0.9373 0.9599 0.9485 

Ensemble 0.9929 0.9928 0.9925 0.9926 0.9678 0.9861 0.9492 0.9673 

ResNet-50 + 
MobileNet-

v2 

SVM 0.994 0.9939 0.994 0.9939 0.9195 0.9846 0.8529 0.914 

KNN 0.9937 0.9933 0.9934 0.9933 0.9436 0.9462 0.9412 0.9437 

MLP 0.9893 0.9882 0.9892 0.9887 0.9503 0.9566 0.9439 0.9502 

Ensemble 0.9951 0.9948 0.9951 0.995 0.9638 0.9806 0.9465 0.9633 

Combined 

SVM 0.9902 0.99 0.9901 0.99 0.9772 0.9786 0.9759 0.9772 

KNN 0.9945 0.9942 0.9941 0.9941 0.9745 0.9708 0.9786 0.9747 

MLP 0.9912 0.9899 0.9914 0.9906 0.9718 0.9783 0.9652 0.9717 

Ensemble 0.9947 0.994 0.9952 0.9946 0.9842 0.9839 0.9786 0.9812 
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Table 8 : Average Execution Time in Minutes 

 

Table 9 : Comparative analysis of accuracy in prior research 
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 ملخص البحث 

تطویر أدوات تشخیصیة فعالة. في حین یظل تفاعل البولیمیراز    ۱۹-قد استلزم الانتقال السریع والواسع النطاق لكوفید
المتســلســل ھو الطریقة القیاســیة للتشــخیص ، فإن حدوده من حیث الوقت وكثافة الموارد تســلط الضــوء على الحاجة إلى  

ل اقتراح منھجیة ھجینة من ثلاث مراحل للتعرف السـریع على كوفید حلول بدیلة. تعالج ھذه الدراسـة ھذه الفجوة من خلا
باسـتخدام الأشـعة المقطعیة. في المرحلة الأولى ، یتم اسـتخدام الشـبكات العصـبیة التلافیفیة المدربة مسـبقا ، بما في   ۱۹-

تخراج المیزات ذات الصـلة من الرئتین المتضـررة من كوفید  MobileNet v2، و VGG-16   ،ResNet-50 ذلك . ۱۹-، لاسـ
المرحلة الثانیة تعزز اختیار میزة من خلال تطبیق تقنیات الكشـف عن مجریات الأمور الفوقیة مثل الخوارزمیات الجینیة 

)GA  ( سـرب و) الجسـیمات الأمثلPSO وتحسـین مجموعة میزة لتحسـین الدقة. وأخیرا ، یتم تصنیف المیزات المختارة ، (
٪ على مجموعات   ۹۸٫٤۲٪ و   ۹۹٫٥۷  تصــل إليباســتخدام أربعة مصــنفات متمیزة ، وتحقیق دقة تصــنیف ملحوظة 

عدة شبكات عصبیة   ، على التوالي. تكمن حداثة ھذا النھج في دمج  SARS-CoV-2 CT-Scanو    COVIDx-2A CT البیانات
مساھماتنا تطویر أداة تشخیصیة قویة تتضمن  .اختیار المیزات والتصنیفوالأسالیب الفوقیة لتحسین أداء     CNNsتلافیفیة  

 التقلیدیة. RT-PCR، مما یوفر بدیلاً فعالاً لطرق ۱۹- كوفیدتحُسن بشكل كبیر من سرعة ودقة الكشف عن 
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