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Abstract 

Liver segmentation from CT images is a critical and foundational task in medical image analysis, playing a pivotal role 
in accurate diagnosis, treatment planning, and patient management, particularly in liver-related diseases. The ability to 
precisely delineate the liver is essential for tasks ranging from assessing liver volume to planning surgical procedures 
and targeting radiation therapy. In this work, an advanced adaptation of the U-Net architecture, integrating 
DenseNet121 as its backbone is used. This combination leverages DenseNet’s dense connections, ensuring efficient 
gradient flow and feature reuse, enhancing learning capability. Preprocessing steps, including resizing images to 
256x256 pixels, histogram equalization, normalization, and binary mask conversion, are applied to ensure data 
consistency and enhance model performance. Two distinct datasets, 3D-IRCADb-01 and LiTS, are used. The Dice 
Similarity Coefficient (DSC) is used to evaluate the performance of various models. For dataset 3D-IRCADb-01, 
remarkable DSC scores are achieved, with the highest reaching 96.5%, and accuracy of 99.5%, indicating the 
effectiveness of the segmentation models. For dataset LiTS, the models excelled further, achieving DSC scores as high 
as 98.1% and accuracy of 99.7%. After segmentation, regions of interest (ROIs) are extracted, facilitating subsequent 
medical analysis and diagnosis. These results demonstrate the robustness and accuracy of the proposed model in liver 
segmentation tasks. 
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1. Introduction 

     Liver segmentation from computed tomography (CT) images is a fundamental task in medical image 
analysis, playing a crucial role in the diagnosis and treatment of liver diseases. Accurate segmentation is 
essential for various clinical applications, such as liver volume measurement, surgical planning, and the 
evaluation of tumor response to therapy. However, the complexity of the liver’s anatomical structure, the 
presence of adjacent organs with similar intensities, and the variability in liver shapes and sizes among 
different patients pose significant challenges to this task [1]. 

In medical research, liver segmentation aids in developing new treatments, understanding liver pathologies, 
and creating educational anatomical models. Advances in machine learning and artificial intelligence have led 
to automated segmentation techniques, enhancing efficiency and accuracy, reducing radiologists’ workload, 
and improving patient outcomes. [2]. 

Recent advancements in deep learning (DL) have significantly improved the efficiency and accuracy of 
segmentation approaches for various organs compared to traditional methods. U-Net-based architectures, 
especially 3D U-Net, are extensively used in medical image segmentation due to their ability to handle sparse 
volumetric data and retain more features with 3D input. The nnU-Net framework, which utilizes both 2D and 
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3D U-Net architectures, offers state-of-the-art performance through automatic hyperparameter tuning and data 
augmentation. Despite its success, 3D U-Net demands significant computational resources due to the 
inclusion of irrelevant features. To mitigate these issues, deep learning techniques, particularly fully 
convolutional neural networks (FCNs), have revolutionized medical image analysis, providing effective 
solutions for liver segmentation. Automated segmentation techniques are being explored to address the time-
consuming and variable nature of manual segmentation by skilled operators, offering more consistent and 
efficient alternatives [3]. 

In this work,  DenseNet121 is adapted as the backbone for the U-Net architecture for liver segmentation. 
DenseNet is chosen over other architectures, such as ResNet and VGG, for its ability to ensure efficient 
gradient flow through dense connectivity, where each layer has direct access to the gradients from the 
preceding layers. This architecture facilitates feature reuse, leading to better feature propagation and a 
reduction in the number of parameters compared to other architectures. ResNet, while effective at addressing 
vanishing gradients through skip connections, lacks the same level of feature reuse, making DenseNet more 
suitable for medical image analysis tasks where capturing intricate details is crucial. Similarly, VGG has a 
significantly larger number of parameters, making it less computationally efficient and more prone to 
overfitting compared to DenseNet. 

 
This paper explores liver segmentation in CT scans using deep learning. The contributions in this 

challenging domain are produced in the following points:  
 
1. Propose an improved U-Net architecture with DenseNet121 as its backbone, specifically designed for 

liver segmentation in CT scans. While DenseNet improves gradient flow through its dense 
connections, it also facilitates feature reuse, meaning that each layer can access the outputs of all 
previous layers. This results in a more efficient feature representation, allowing the network to capture 
fine-grained details in medical images that may be missed by other architectures. 

2. Enhance the decoder architecture by incorporating Batch Normalization after each convolutional layer, 
improving training speed and stability, and employing Dropout layers with a 25% rate to prevent 
overfitting. Batch Normalization also stabilizes learning, allowing the model to converge faster 
compared to traditional architectures that do not normalize intermediate layers. This helps the model 
perform better across diverse datasets and reduces the risk of overfitting. 

3. Optimize the model with specific filter configurations, starting with 256 filters and gradually reducing 
to 32 filters, effectively balancing detail capture and computational efficiency.  

4. Conduct a comprehensive evaluation of the proposed method on two distinct and challenging datasets, 
demonstrating the model’s robustness, high accuracy, and effectiveness in liver segmentation tasks.  

5. Demonstrate the practical application of the model by facilitating the extraction of regions of interest 
(ROIs) post-segmentation, supporting subsequent medical analysis and diagnosis, thereby contributing 
to improved clinical outcomes and patient care. 

The research is systematically organized, beginning with a comprehensive review of the current state-
of-the-art in liver segmentation (Section 2). It then details the methodologies and techniques employed in 
the study (Section 3). Section 4 presents the results, supported by various performance metrics. The paper 
concludes with a discussion of the findings and future research directions in Section 5, followed by the 
conclusions in Section 6. 

2. Related Work  

The task of medical image analysis, especially the segmentation of the liver from CT scans, holds 
significant importance in healthcare due to its applications in accurate diagnostics and the development of 
personalized treatment plans. Various computational techniques have been explored over the years to enhance 
the precision and efficiency of liver segmentation algorithms. Notably, the U-Net architecture and its variants 
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have received considerable attention for their ability to effectively capture detailed patterns within medical 
images, contributing to their widespread adoption and success in this domain. 

 
Hoang et al. [4], the performance of three established Convolutional Neural Networks(CNNs), DRIU, 

FCN-CRF and V-net was evaluated in terms of liver segmentation using diverse medical data sources. Results 
indicated consistent success, with all CNNs achieving mean Dice scores exceeding 0.90% on typical contrast-
enhanced CT liver images. Statistical analysis revealed no significant performance differences among the 
networks, with DRIU demonstrating efficient processing.  

Jiang et al. [5], an innovative Attention Hybrid Connection Network was introduced, combining soft and 
hard attention mechanisms with long and short skip connections. The research aimed to tackle liver and tumor 
segmentation in medical imaging using a cascade network comprising liver localization, liver segmentation, 
and tumor segmentation networks. The training incorporated a combined dice loss function for precise liver 
bounding box extraction, and fine-tuning was performed using the focal binary cross-entropy loss to enhance 
tumor detection and minimize false positives. The approach underwent thorough evaluation using datasets 
from LiTS, 3D IRCADb-01, and a clinical dataset, demonstrating rapid network convergence, precise 
semantic segmentation, and clinical significance. Notably, the Dice coefficient reached an impressive 95.9% 
in the LiTS dataset and 94.5% in the 3D-IRCADb-01 dataset.  

Ahmed el al. [6] introduces a lightweight convolutional neural network (CNN), named Ga-CNN, designed 
to efficiently segment the liver from CT images. Ga-CNN consists of three convolutional layers and two fully 
connected layers, with softmax used to distinguish the liver from the background. The model uses random 
Gaussian distribution for weight initialization to preserve information. Experiments conducted on three 
benchmark datasets—MICCAI SLiver’07, 3D-IRCADb-01, and LiTS the model’s effectiveness, achieving 
dice similarity coefficients of 92.9% on 3D-IRCADb-01, 97.3% on LiTS, and 95.0% on SLiver’07. These 
results indicate that Ga-CNN provides an efficient and accurate solution for liver segmentation with lower 
computational requirements. 

Christ et al. [7], presented an automated technique for the segmentation of the liver and lesions in CT 
abdomen images. This approach leverages cascaded fully convolutional neural networks (CFCNs) and dense 
3D conditional random fields (CRFs) to achieve effective segmentation. The process involves training and 
cascading two FCNs: the first segments the liver, producing Regions of Interest (ROIs) for the second FCN, 
which specializes in lesion segmentation within these ROIs. Enhancing segmentation accuracy involves 
incorporating spatial coherence and appearance information through a dense 3D conditional random field 
(CRF). The CFCN models undergo training using 2-fold cross-validation on the 3D-IRCADb-01 dataset. The 
Dice scores for liver segmentation exceed 94.0%.  

Jiang et al. [8], developed the Residual Multi-scale Attention U-Net (RMAU-Net), incorporating Res-SE-
Block and Multi-scale Attention Block (MAB). The Res-SEBlock mitigates gradient disappearance and 
enhances feature quality, while the MAB captures rich multi-scale feature information and inter-channel and 
inter-spatial relationships. Additionally, a hybrid loss function combining focal loss and dice loss improves 
segmentation accuracy and speeds up convergence. Evaluated on the LiTS dataset, the RMAU-Net achieved a 
dice score of 95.5% for liver segmentation and 76.1% for liver tumor segmentation.  

Fern´andez et al. [9], investigates various deep learning models, including UNet and its variants, for 
segmenting liver tumors from CT images. The study uses the Liver Segmentation (LiTS) challenge datasets to 
evaluate the models’ performance. The proposed methods achieved significant improvements in segmentation 
accuracy, with Dice similarity coefficients (DSCs) reaching up to 95.0% for liver segmentation.  

Zhe Liu et al. [10], presented a GIU-Net algorithm for liver CT sequence image segmentation built upon an 
enhanced U-Net model in conjunction with graph-cutting techniques. To begin, initiate the segmentation 
process within a liver CT sequence sourced from the LiTS dataset, utilizing the improved U-Net architecture. 
This initial step provides a probability distribution map characterizing the liver regions. Subsequently, the 
algorithm identifies the starting slice for sequence segmentation and the approach integrates contextual 
information extracted from the liver sequence images and the liver probability distribution map to formulate a 
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graph cut energy function. The final segmentation is attained by minimizing this energy function, resulting in 
a Dice coefficient of 95.1%. 

 
Here the state-of-the-art liver segmentation models is reviewed , each varying in terms of model 

complexity and computational efficiency. Models like Ga-CNN [6] offer lower complexity and high 
efficiency, making them suitable for resource-constrained environments, whereas architectures such as 
cascaded FCNs with 3D CRFs [7] and hybrid attention networks [5, 8] provide high accuracy at the cost of 
increased computational demands. The proposed U-Net with DenseNet121 backbone strikes a balance by 
leveraging dense connections for efficient feature reuse and gradient flow, resulting in a model with moderate 
complexity but high segmentation accuracy. A comparison of the related works is summarized in Table 1, 
highlighting key performance and complexity differences across the approaches. 

 
Table 1: Overview of Liver Segmentation Techniques in related work 

Study Method Dataset Dice score Model complexity Efficiency 
Hoang et al. [4] DRIU, FCN-CRF, V-net Contrast-enhanced CT 90.0% Moderate Efficient 
Jiang et al. [5] Attention Hybrid 

Connection Network 
LiTS,  

3D-IRCADb-01 
95.9%,  
94.5% 

High Fast 
convergence 

Ahmed et al. [6] Ga-CNN (Lightweight 
CNN) 

MICCAI 
SLiver’07  

LiTS 

92.9%, 
97.3%,  
95.0% 

Low Highly 
efficient 

Christ et al. [7] CFCN + 3D CRF 3D-IRCADb-01 94.0% High Computationall
y intensive 

Jiang et al. [8] RMAU-Net (Residual 
Multi-scale Attention U-
Net) 

LiTS 95.5% High Moderate 

Fernández et al. [9] U-Net variants LiTS  95% Moderate Standard U-
Net efficiency 

Zhe Liu et al. [10] GIU-Net + Graph-cut LiTS 95.1% High Graph-cut 
optimization 

 

3.  Methodology 

This section provides an overview of the datasets utilized, details the preprocessing steps, outlines the 
segmentation methodology, and describes the performance metrics used for evaluation. The overall phases of 
the model are illustrated in Figure 1.  
3.1 Dataset 

 The 3D-IRCADb-01 dataset [11] comprises twenty 3D CT scans from patients diagnosed with liver 
cancer. Each CT image contains liver density values ranging from 40 to 135 Hounsfield units (HU) and has a 
spatial resolution of 512 x 512 pixels per slice. The voxel spacing, which defines the physical distance 
between slices, varies depending on the patient and scan but typically ranges from 0.5 to 1.6 mm. The dataset 
is organized into discrete DICOM (Digital Imaging and Communications in Medicine) segments, where each 
segment includes not only the raw CT images but also corresponding segmentation masks that highlight 
different anatomical structures, including the liver and tumors. These segmentation masks are provided in the 
DICOM format, ensuring compatibility with standard medical imaging tools. Figure 2 showcases sample 
images from this dataset after converting the original DICOM files into PNG images, along with their 
corresponding segmentation masks. 

 
The LiTS (Liver Tumor Segmentation) dataset [12] serves as a benchmark dataset for liver tumor 

segmentation, containing 200 CT scans. The CT scans in the LiTS dataset are provided in the NII 
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(Neuroimaging Informatics Technology Initiative) file format, which supports 3D image data. Each scan 
covers the abdominal region and has voxel resolutions that typically range from 0.6 to 1.0 mm in the x and y 
dimensions (in-plane resolution), with slice thickness varying between 1 and 5 mm. For model training and 
testing, the 3D CT scans are preprocessed into sequences of 2D image slices, stored as PNG images for ease 
of processing and visualization. These preprocessed slices form both the training and testing datasets. Figure 3 
displays representative images segmentations from the LiTS dataset. 

 
Fig. 1. The workflow of proposed liver segmentation model 

Fig. 2. Samples of 3D-IRCADb-01 Dataset, the first set of images represents CT image, followed by the corresponding liver masks. 
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Fig. 3. Samples of LiTS Dataset, the first set of images represents CT image, followed by corresponding liver masks. 
 
3.2 Pre-processing phase 

 
 In the preprocessing phase of an image analysis pipeline, a systematic series of steps is followed to 

prepare the dataset for subsequent analysis and model training. These steps are encapsulated in Algorithm 
1, referred to as the “Image Preprocessing Algorithm”. Firstly, the images from the dataset are acquired. To 
guarantee uniformity and consistency, all images undergo resizing to a standardized 256x256 pixel size. 
This specific size was chosen to strike a balance between increasing the size of the dataset, which was 
memory-intensive and limited by available resources, and maintaining image quality. Smaller sizes are 
considered, but they significantly compromised the quality of the images, which in turn had a detrimental 
influence on the efficacy of the outcomes, making 256x256 pixels the optimal compromise. Only the 
images accompanied by masks are carefully selected, as these masks provide essential ground truth 
information. This selection process is crucial to avoid class imbalance during training. Specifically, images 
without accompanying masks are excluded from the dataset because their absence would significantly skew 
the distribution of classes, potentially leading to biased training results and affecting the model’s ability to 
accurately learn and generalize from the available data.  

Subsequently, the contrast of the images is enhanced through histogram equalization, making subtle 
details more discernible. This technique is employed to address the issue of non-uniform illumination and 
varying contrast levels within the dataset, ensuring that important anatomical features and pathological 
regions are consistently and effectively highlighted across all images. Histogram equalization plays a 
critical role in standardizing image quality and enhancing the overall interpretability of the dataset. Pixel 
values are then normalized to the [0, 1] range to ensure consistent data for analysis and model training. 
This normalization step is crucial to mitigate the impact of varying intensity scales in the original images, 
thereby allowing different images to be directly comparable and preventing certain images from 
disproportionately influencing the training process due to their original intensity ranges. No specific noise 
reduction steps were applied because the dataset's quality and the preprocessing steps already in place 
(histogram equalization and normalization) were sufficient to handle any minor noise or artifacts. 

Normalization also helps in stabilizing model convergence during training and promoting the 
effectiveness of subsequent image analysis and machine learning tasks. Lastly, grayscale masks are 
converted into a binary format, simplifying processing. This conversion is performed to streamline 
subsequent processing steps and facilitate the implementation of image segmentation algorithms. Binary 
masks, where each pixel is either classified as a relevant region or not, simplify the identification of 
specific anatomical structures or pathological areas in the images. This simplification reduces 
computational complexity, enhances the efficiency of image analysis, and improves the overall accuracy of 
segmentation tasks. This comprehensive preprocessing procedure ensures that the data is appropriately 
prepared for subsequent stages of the analysis and modeling efforts. 
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Algorithm 1 Image Preprocessing Algorithm 
Input: Images from the dataset  
Output: Preprocessed images with masks  
procedure ImagePreprocessing  
      for each image in the dataset do  
          Image Acquisition  
          Resizing to 256x256 pixels  
           if image has a mask then  
                 Histogram Equalization  
                 Normalization to [0, 1] range  
                 Mask Conversion to binary format  
           else  
                 Exclude image (no mask available)  
           end if  
     end for  
end procedure 

 
 

3.3 Segmentation Approach 
 

3.3.1 Hybrid DenseNet-UNet Model 
 

The proposed model for liver segmentation represents an advanced adaptation of the U-Net architecture, 
integrating the powerful DenseNet121 [13] as its backbone which summarized the steps in detailes in Table 
2. This combination leverages DenseNet’s dense connections, which ensure efficient gradient flow and 
feature reuse, enhancing the overall learning capability of the model. Key enhancements in the proposed 
model include the strategic use of Batch Normalization, Dropout layers, and specific configurations of 
filters. This model is structured into three distinct steps: Encoder, Decoder, and Output Layer, as explained 
below. 
• Encoder  

The encoder leverages DenseNet’s dense connections, which ensure efficient gradient flow and feature 
reuse, enhancing the overall learning capability of the model. By incorporating DenseNet121 up to the 
conv4_block24_concat layer, the model benefits from DenseNet’s densely connected blocks, which 
enhance feature propagation and utilization through direct connections between layers. This deep feature 
extraction captures complex patterns and textures in the input images, crucial for accurate segmentation. 
The pre-trained weights ensure that the model starts with a strong foundation of visual knowledge, 
significantly improving convergence speed and performance on the liver segmentation task. 
• Decoder  

The decoder component systematically upsamples the feature maps to the original image dimensions 
while integrating encoder features through skip connections. Each Conv2DTranspose layer performs 
upsampling, effectively increasing the spatial resolution of the feature maps. The concatenation with 
corresponding encoder layers (such as conv3 block12 concat and conv2 block6 concat) reinstates lost 
spatial information, enhancing the detail and accuracy of the segmentation. Subsequent Conv2D layers 
with ReLU activation and batch normalization refine these features, promoting stability and efficient 
training. Batch Normalization is employed after each convolutional layer and skip connections, 
standardizing the inputs to a layer, improving training speed and stability. This technique mitigates issues 
related to internal covariate shift, allowing for higher learning rates and faster convergence. Dropout layers, 
particularly after Batch Normalization layers, serve as a regularization technique to prevent overfitting. 
Dropout works by randomly deactivating a fraction of neurons during training, forcing the model to learn 
more robust features that generalize better to unseen data. In the proposed model, a dropout rate of 25% is 
used, which was empirically determined through experimentation to provide the best balance between 
regularization and maintaining model performance. Comparative trials with lower and higher dropout rates 
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(10% and 50%) demonstrated that 25% offered the optimal trade-off, preventing overfitting while 
preserving learning capacity. The decoder layers start with 256 filters, gradually reducing to 32 filters as 
the spatial resolution increases. This gradual reduction aligns with the increasing spatial dimensions, 
ensuring that the model can capture fine details necessary for accurate segmentation while managing 
computational complexity. The filter size of (3,3) is chosen for its effectiveness in capturing spatial features 
at various scales. 
• Output Layer  

The output layer comprises a Conv2D layer with a single filter and a 1x1 filter size, followed by a 
sigmoid activation function. This layer translates the refined feature maps from the decoder into a final 
segmentation map, where each pixel’s value represents the probability of it being part of the liver. The 1x1 
convolution ensures that spatial dimensions are maintained while reducing the depth to one channel, 
suitable for binary segmentation tasks. The sigmoid activation function normalizes the output to a range 
between 0 and 1, facilitating a probabilistic interpretation that is essential for segmentation tasks, as it 
clearly distinguishes between liver and non-liver regions in the image.  

 
In summary, the proposed model enhances the original U-Net by incorporating DenseNet121 for its 

encoder, and introduces Batch Normalization and Dropout layers to improve training stability and prevent 
overfitting. The carefully chosen filter sizes and number of filters at each layer ensure a balanced approach 
to capturing detailed features and managing computational efficiency, making the model robust and 
effective for liver segmentation tasks. 

 
Table 2: Architecture Details of Modified Unet using DenseNet model 

Component Details 
Encoder(DenseNet121) Pre-trained with weights from ImageNet, up to layer conv4_block24_concat 
Decoder Conv2DTranspose(Num_filter=256, filter_size=3x3, stride=2x2, padding='same') 

Concatenate with encoder's skip connection (conv3_block12_concat) 
Conv2D(Num_filter=256, filter_size=3x3, activation=ReLU, padding='same') 
BatchNormalization 
Dropout (rate=0.25) 
Conv2D(Num_filter=256, filter_size=3x3, activation=ReLU, padding='same') 
BatchNormalization 
Conv2DTranspose(Num_filter=128, filter_size=3x3, stride=2x2, padding='same') 
Concatenate with encoder's skip connection (conv2_block6_concat) 
Conv2D(Num_filter=128, filter_size=3x3, activation=ReLU, padding='same') 
BatchNormalization 
Dropout (rate=0.25) 
Conv2D(Num_filter=128, filter_size=3x3, activation=ReLU, padding='same') 
BatchNormalization 
Conv2DTranspose(Num_filter=64, filter_size=3x3, stride=2x2, padding='same') 
Conv2D(Num_filter=64, filter_size=3x3, activation=ReLU, padding='same') 
BatchNormalization 
Dropout(rate=0.25) 
Conv2D(Num_filter=64, filter_size=3x3, activation=ReLU, padding='same') 
BatchNormalization 
Conv2DTranspose(Num_filter=32, filter_size=3x3, stride=2x2, padding='same') 
Conv2D(Num_filter=32, filter_size=3x3, activation=ReLU, padding='same') 
BatchNormalization 
Dropout(rate=0.25) 
Conv2D(Num_filter=32, filter_size=3x3, activation=ReLU, padding='same') 
BatchNormalization 

Output Conv2D (Num_filter=1, filter_size=1x1, activation=sigmoid) 
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3.4 Performance Metrics 
 

     To assess the effectiveness of the segmentation technique, the comparison between the binary mask 
derived from the segmentation output and the reference ground truth mask is quantified. Various performance 
metrics, including but not limited to DSC, JSC, and accuracy, are employed for this evaluation. 
     Several common metrics are utilized to evaluate the performance of segmentation models: 
• True Positives (TP): The number of correctly predicted foreground pixels or regions. 
• True Negatives (TN): The number of correctly predicted background pixels or regions. 
• False Positives (FP): The number of background pixels or regions incorrectly predicted as foreground. 
• False Negatives (FN): The number of foreground pixels or regions incorrectly predicted as background. 

 
Dice Similarity Coefficient (DSC): Also recognized as the F1-score for binary segmentation, DSC quantifies 
the spatial overlap between the predicted and ground truth segmentations. 

DSC = 2 * TP / (2 * TP + FP + FN)                                                       (1) 
Jaccard Similarity Coefficient (JSC): Also known as the Intersection over Union (IoU), JSC measures the 
ratio of the intersection to the union of the predicted and ground truth regions. 

                                                                            JSC = TP / (TP + FP + FN)                                                    (2) 
Accuracy: Measures the overall correctness of the segmentation. 

ACC = (TP + TN) / (TP + TN + FP + FN                                          (3) 

Recall (Sensitivity): Assesses the model's ability to correctly identify all positive instances. 
TP / (TP + FN)                                                                      (4) 

Surface Volume Difference (SVD): Measures the difference in volume between the predicted and ground 
truth surfaces. 

SVD = |Vp - Vg| / Vg                                                             (5) 

Where Vp is the volume of the predicted surface, and Vg is the volume of the ground truth surface. 
 
Generally, higher values for DSC, JSC, Accuracy, Precision, Recall, and Specificity, and lower values for 
SVD indicate better segmentation performance. 

4. Experiments and Results 

4.1. Experimental Set-Up 

  In the experimental setup, a laptop with an Intel Core i7 processor, 16.0 GB of RAM, and Windows 11 
Pro is utilized. For model training, the cloud-based Kaggle platform is employed, leveraging dual Nvidia 2 x 
T4 GPUs. This GPU configuration provided accelerated training and inference, facilitating efficient 
development and evaluation of the machine learning models for image analysis tasks. The chosen hardware 
and GPU setup were sufficient to handle the computational demands of the DenseNet-UNet architecture, 
ensuring efficient convergence without excessive resource usage. 

The model architecture, as summarized in Table 3, has been thoughtfully designed and meticulously 
optimized for two distinct medical image datasets: 3D-IRCADb- 01 and LiTS. For both the 3D-IRCADb-01 
and LiTS datasets, the entire dataset is partitioned into a training set and a test set, with 0.8 allocated for 
training and the remaining 0.2 for testing. This split is chosen to ensure that the model could be effectively 
trained and rigorously evaluated within the available memory constraints and resource limitations. 
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Table 3: Hybrid DenseNet-UNet model Parameter 
Dataset No 

images 
Train 
images 

Test 
images 

No 
Epochs 

Batch 
size 

Shuffle Optimizer Loss Early 
Stopping 

LiTS 6500 5200 1300 50 8 True Adam B.C.E Val Loss 
3D-IRCADb-01 2823 2258 565 50 8 True Adam B.C.E Val Loss 

 where B.C.S is binary cross-entropy 
 

For the 3D-IRCADb-01 dataset, which contains a total of 2,823 images, training is extended over 50 
epochs (as depicted in Figure 4), as this epoch count consistently yielded the most reliable results. Training 
for 50 epochs is chosen to ensure the model effectively captured the nuances of the images and reached the 
desired level of performance. By the 50th epoch, the training and validation loss and accuracy had stabilized, 
indicating that the model had converged and learned the dataset’s characteristics effectively.  

 
Similarly, for the LiTS dataset, given the memory limitations, a total of 6,500 images are randomly 

selected. Training for the LiTS dataset is conducted over 50 epochs (as shown in Figure 5), a choice made to 
strike the optimal balance between model convergence and stability. The decision to use 50 epochs is based 
on empirical observations and experimentation, which indicated that the model effectively learned the 
dataset’s characteristics within this timeframe.   

Fig. 4. (a) Training and validation loss ,(b) Training and validation accuracy via Epochs in 3DIRCADb-01 dataset 

 
Fig. 5. (a) Training and validation loss ,(b) Training and validation accuracy via Epochs in LiTS dataset  
 

Several key hyperparameters were carefully chosen to optimize the model’s performance. The Adam 
optimizer was selected for its efficiency in handling sparse gradients, with binary cross-entropy (BCE) as the 
loss function, which is suitable for segmentation tasks. The initial learning rate was set to 1e-4, which was 
empirically determined to provide stable training without causing rapid oscillations in the loss function. A 
learning rate scheduler was employed to reduce the learning rate by a factor of 0.1 if no improvement in 
validation loss was observed for a predefined number of epochs. 
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The batch size was set to 8 across all training configurations to manage memory constraints while ensuring 
the model could generalize effectively. Early stopping was used to monitor validation loss, with training 
halting if no improvements were observed for 10 consecutive epochs, preventing overfitting. The model was 
trained for a maximum of 50 epochs to ensure convergence, with early stopping usually occurring before this 
limit was reached. 

To prevent overfitting, a dropout rate of 0.25 was applied during training, alongside batch normalization 
after each convolutional layer. Shuffling was enabled during training to introduce randomness in the sample 
order, improving generalization. The model used ReLU activation functions for all intermediate layers. 

4.2. Preprocessing Results 

The preprocessing phase aims to ensure data consistency and enhance image quality for analysis. It begins 
by resizing all images to a uniform 256x256 pixel size, excluding those without masks. Histogram 
equalization is then applied to improve contrast, followed by normalization to scale pixel values to the [0, 1] 
range. Additionally, grayscale masks are converted into binary format to simplify processing. Figure 6 
illustrates the results of these preprocessing steps for the 3D-IRCADb-01 dataset, while Figure 7 showcases 
the outcomes for the LiTS dataset. These processed images and masks serve as the foundation for the 
subsequent analysis and model development, ensuring high-quality and standardized data. 

 
Fig. 6. The  3D-IRCADb-01dataset images before and after the preprocessing phase. The first set of images represents the original data, 
followed by the corresponding images after undergoing preprocessing. 
 

 
Fig. 7. The LiTS dataset images before and after the preprocessing phase. The first set of images represents the original data, followed by 
the corresponding images after undergoing preprocessing. 
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4.3. Segmentation Results  

The proposed model for liver segmentation has been evaluated on two distinct and challenging datasets, 
LiTS and 3D-IRCADb-01, with the results presented in Table 4. The performance metrics clearly demonstrate 
the robustness and effectiveness of the model across different evaluation criteria.  

 
For the LiTS dataset, the model achieved an exceptional accuracy of 99.7%, indicating a high level of 

correctness in the segmentation process. The Dice Similarity Coefficient (DSC) further supports this, with the 
model attaining a score of 98.1%, reflecting a substantial overlap between the predicted segmentation and the 
ground truth. This high DSC value is complemented by a Mean IoU of 96.5%, showcasing the model’s 
capability to accurately segment liver regions even in complex scenarios. The recall rate of 98.4% highlights 
the model’s proficiency in identifying true positive liver regions, minimizing the instances of missed 
segments. Additionally, the Surface Volume Difference (SVD) is impressively low at 0.003, underscoring the 
precision of the volume estimations compared to the ground truth.  

 
Similarly, for the 3D-IRCADb-01 dataset, the model maintained a high level of performance with an 

accuracy of 99.5%. The DSC value of 96.5% indicates strong agreement between the predicted and actual 
liver segments, while the Mean IoU of 93.0% confirms the model’s effectiveness in achieving accurate 
segmentation. The recall rate matches the DSC at 96.5%, further illustrating the model’s reliability in 
detecting liver regions. The SVD value of 0.007, though slightly higher than that for LiTS, still represents a 
minimal deviation, demonstrating the model’s consistency in volume estimation across different datasets.  

 
Overall, the results in Table 4 validate the proposed model’s superior performance in liver segmentation 

tasks, providing a reliable tool for clinical applications and further medical analysis. The high accuracy, DSC, 
and recall rates, coupled with low SVD values, indicate that the model not only performs well in terms of 
segmentation precision but also ensures minimal volumetric errors, making it highly suitable for practical 
deployment in medical imaging scenarios.  

 
Table 4: Performance Metrics for Liver Segmentation 
 

Metrics Liver Segmentation 
LiTS 

Liver Segmentation 
3D-IRCADb-01 

Accuracy (%) 99.7 99.5 
Dice Coefficient (%) (DSC) 98.1 96.5 
Mean IoU (%) 96.5 93.0 
Recall (%) 98.4 96.5 
SVD 0.003 0.007 

 
In Figure 8 and Figure 9 the comprehensive results of the model’s performance are presented on the 3D-

IRCADb-01 dataset and LiTS respectively. The first row of the figure showcases the output of the 
preprocessing phase, where images are uniformly resized, contrast is enhanced through histogram 
equalization, and grayscale masks are converted into binary format for simplicity. In the second row, a visual 
representation of the ground truth for the images is provided. The third row reveals the predictions generated 
by the model, demonstrating its ability to classify and interpret the images effectively. Lastly, the fourth row 
exhibits the overlap of the model’s predictions onto the original images, offering a visual insight into the 
alignment of the model’s output with the actual data. These four rows collectively offer a comprehensive 
overview of the model’s performance and its alignment with the ground truth.  
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Fig. 8. Segmentation results on the 3D-IRCADb-01 dataset using the Hybrid DenseNet-UNet model. The images start with the original 
CT scans, followed by the ground truth masks. Then, the predicted segmentation masks are presented, and finally, the overlap between 
the predicted masks and the CT images is shown. 
 

 
Fig. 9. The segmentation results on the LiTS dataset using the Hybrid DenseNet-UNet model. The first set of images shows the original 
CT scans, followed by the ground truth segmentation masks. Next, the predicted segmentation masks are displayed, and finally, the 
overlap between the predicted masks and the original CT scans is visualized in the last row. 
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4.4. Comparative Analysis  

The segmentation performance results are presented in two distinct tables, providing a comprehensive 
comparison of various models and their respective DSC. In Table 5 and Table 6, the performance of 
established models from previous studies is observed, including U-Net, Improved U-Net and Graph Cut, 
GANs and the Mask R CNN, CDNN-II, Cascaded ResNet (with Multi-scale Fusion), Enhanced M-RCNN, H-
DenseUNet, Attention U-Net++, and AHCNET. These models exhibit a wide range of DSC values, 
demonstrating their varying degrees of effectiveness in the task. Notably, the models introduced in this paper, 
leveraging DenseNet, emerged as top performers, consistently achieving the highest DSC values and 
demonstrating superior segmentation capabilities. This underscores the significant advancements and 
contributions made by the models presented in this study, setting a new benchmark for medical image 
segmentation  

In Table 5 and 6, The proposed model is introduced, which leveraged Hybrid DenseNet-UNet Model. This 
model demonstrates a remarkable DSC score of 98.1% for LiTS dataset and 96.5% for 3D-IRCADb-01 
dataset, indicating its proficiency in accurately segmenting medical images. By comparing the proposed 
model’s performance with these established benchmarks, Its superior segmentation capabilities are 
highlighted, offering promising results for medical image analysis tasks. These two tables collectively offer an 
informative overview of the segmentation performance landscape, with the proposed model standing out as a 
promising advancement in the field.  

 
Table 5: Segmentation Performance Comparison based on 3D-IRCADb-01 dataset 

Paper Model DSC 
Jiang in [5] AHCNET 94.5% 
Christ [7] CFCN 94.3% 
Ümit Budak in [15] EDCNN 95.2% 
Rafiei in [16] 3D-2D-FCN 93.5% 
Ayalew in [17] Modified U-Net 96.1% 
Alirr in [18] FCN and level-set 95.2% 
Proposed Hybrid DenseNet-UNet Model 96.5% 

 
Table 6: Segmentation Performance Comparison based on LiTS dataset 

Paper Model DSC 
Ayalew in [19] U-Net 96.1% 
Jiang in [5] AHCNET 95.9% 
Balasubramanian in [20] Enhanced M-RCNN 95.7% 
Wei in [21] GANs and the Mask R CNN 95.3% 
Zhe Liu in [10] Improved U-Net and Graph Cut 95.1% 
Bi Lei in [22] Cascaded ResNet (w Multi-scale Fusion) 95.5% 
Li Xiaomeng in [23] H-DenseUNet 96.5% 
Yuan in [24] CDNN-II 0.967 
Elnakib in [25] CNN with Majority voting 94.2% 
Proposed Hybrid DenseNet-UNet Model 98.1% 

5. Discussion 

The proposed model, which integrates DenseNet121 into the U-Net architecture, demonstrates significant 
advancements in liver segmentation from CT images. Leveraging DenseNet’s dense connections in the 
encoder component enhances gradient flow and feature reuse, capturing complex patterns essential for 
accurate segmentation. The use of pre-trained weights accelerates convergence and improves performance.  

The decoder’s design, incorporating skip connections, reinstates lost spatial information and refines 
features through Batch Normalization and Dropout layers. This approach enhances training stability, mitigates 
internal covariate shift, and prevents overfitting. A dropout rate of 25% strikes a balance between 
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regularization and learning capacity. The progressive reduction of filters from 256 to 32, with a (3,3) filter 
size, ensures detailed feature capture and computational efficiency.  

The output layer, featuring a Conv2D layer with a 1x1 filter and sigmoid activation, translates feature maps 
into a segmentation map with clear distinctions between liver and non-liver regions.  

Evaluations on the 3D-IRCADb-01 and LiTS datasets demonstrate the model’s robustness and accuracy. 
Achieving DSC scores of up to 96.5% and 98.1%, and accuracy rates of 99.5% and 99.7%, respectively, 
underscores the model’s effectiveness in liver segmentation tasks. These high-performance metrics facilitate 
the extraction of regions of interest (ROIs) for subsequent medical analysis and diagnosis.  

In summary, the integration of DenseNet121, along with strategic enhancements like Batch Normalization 
and Dropout layers, significantly improves the U-Net architecture’s capability in liver segmentation tasks. 
The proposed model’s robustness and accuracy establishes it as a valuable tool in medical image analysis.  

6. Conclusion  

In this paper, a sophisticated and highly effective approach is presented to liver segmentation from CT 
images by integrating DenseNet121 into the U-Net architecture. The proposed model capitalizes on 
DenseNet’s dense connections, ensuring efficient gradient flow and feature reuse, which significantly 
enhances the model’s learning capability and performance. The strategic incorporation of Batch 
Normalization and Dropout layers within the decoder has proven to improve training stability and prevent 
overfitting, while the meticulously designed filter configurations ensure a balanced approach to capturing 
detailed features and managing computational complexity. The comprehensive evaluations on the LiTS and 
3D-IRCADb-01 datasets have demonstrated the model’s robustness and superior performance, achieving Dice 
Similarity Coefficients of 98.1% and 96.5%, and accuracies of 99.7% and 99.5%, respectively. These results 
underscore the effectiveness of the proposed approach in delivering precise and reliable liver segmentation. 
Furthermore, the ability of the model to facilitate the extraction of regions of interest (ROIs) post-
segmentation holds significant promise for subsequent medical analysis and diagnosis, thereby contributing to 
improved clinical outcomes and patient care. Overall, this work sets a new benchmark in medical image 
segmentation, offering a valuable tool for healthcare professionals and paving the way for future 
advancements in the field.  
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 للتجزئة الدقیقة للكبد في صور الأشعة المقطعیة  DenseNet-UNet النموذج الھجین 
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 الملخص 
في تحلیل الصور الطبیة، حیث تلعب دورًا محوریًا في التشخیص الدقیق، تخطیط العلاج،    واساسیھ  مھمھ حاسمھ تعُتبر تجزئة الكبد من صور الأشعة المقطعیة  

القدرة على تحدید الكبد بدقة ضروریة في المھام التي تتراوح بین تقییم حجم الكبد وتخطیط الإجراءات   .وإدارة المرضى، لا سیما في الأمراض المتعلقة بالكبد 
یستفید ھذا   .كعمودھا الفقري   DenseNet121، مع دمج U-Netفي ھذا العمل، یتم استخدام تعدیل متقدم لبنیة   .الجراحیة واستھداف العلاج الإشعاعي

یتم تطبیق خطوات معالجة   .مما یضمن تدفقاً فعالاً للتدرجات وإعادة استخدام المیزات، مما یعزز القدرة على التعلم  DenseNetالدمج من الروابط الكثیفة في 
  لتعزیز، والتطبیع، وتحویل القناع إلى ثنائي، لضمان اتساق البیانات و  بكسل، وتعدیل التباین التاریخي 256x256 مسبقة، بما في ذلك تغییر حجم الصور إلى 

لتقییم أداء النماذج   Dice (DSC) تم استخدام معامل تشابھ    LiTSو 3D-IRCADb-01 وھما   تم استخدام مجموعتي بیانات مختلفتین  أداء النموذج 
  %99.5 وبلغت الدقة     %96.5حیث بلغت أعلى قیمة    DSCتم تحقیق نتائج ممتازة في معامل   3D-IRCADb-01بالنسبة لمجموعة بیانات  .المختلفة 

ودقة بلغت   %98.1تصل إلى  DSC فقد تفوقت النماذج أكثر حیث حققت درجات   LiTSأما بالنسبة لمجموعة بیانات  .مما یشیر إلى فعالیة نماذج التجزئة 
تظھر ھذه النتائج قوة ودقة النموذج المقترح في مھام   .مما یسھل التحلیل الطبي اللاحق والتشخیص بعد التجزئة، یتم استخراج مناطق الاھتمام   99.7%

 .تجزئة الكبد 
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